scholarly journals Advances on coastal erosion assessment from satellite earth observations: exploring the use of Sentinel products along with very high resolution sensors

Author(s):  
Paula Gomes da Silva ◽  
Anne-Laure Beck ◽  
Jara Martinez Sanchez ◽  
Raúl Medina Santanmaria ◽  
Martin Jones ◽  
...  

This work proposes the use of automatic co-registered satellite images to obtain large, high frequency and highly accurate shorelines time series. High resolution images are used to co-register Landsat and Sentinel-2 images. 90% of the co-registered images presented vertical and horizontal shift lower than 3 m. Satellite derived shorelines presented errors lower than mission’s precision. A discussion is presented on the applicability of those shorelines through an application to Tordera Delta (Spain).

2020 ◽  
Author(s):  
Denis Jongmans ◽  
Sylvain Fiolleau ◽  
Gregory Bièvre ◽  
Guillaume Chambon ◽  
Pascal Lacroix

<p>Many regions of the world are exposed to landslides in clay deposits, which poses major problems for land management and population safety. In recent years, optical satellite imaging has emerged as a major and inexpensive tool for understanding and monitoring the kinematics of slow moving landslides, such as earthflows/earthslides, through easy access of data and reliable calibration.</p><p>The Sentinel-2 optical satellites provide a global coverage of land surfaces with a 5-day revisit time at the Equator. We studied the ability of these freely available optical images to detect landslide reactivations in a zone of 25 km<sup>2</sup> around the Harmalière landslide in the Trièves area (western Alps, France). This area is characterized by the presence of a thick lacustrine clay layer that is affected by numerous landslides. Using a 9-month time-series of displacement derived from Sentinel-2 data, Lacroix et al. 2018 recently evidenced a precursor displacement of a major reactivation of the Harmalière landslide that occurred in June 2016.</p><p>In this study, we attempted to detect following reactivations using the medium resolution high frequency satellite images (Sentinel 2) coupled with high resolution images (Pléiades) over a longer period (2016- 2019). We used an inversion strategy of redundant cross-correlation images to produce a robust time-series of displacement from Sentinel 2 data (Bontemps et al. 2018). By applying this technique, we were able to identify a reactivation of the same order of magnitude as the previous one, which affected the headscarp in January 2017. The reactivation signal is validated by the cross-correlation of Pléiades images taken at 2 years interval. We quantified this reactivation in time and space. We have also identified an area of 30x10<sup>3</sup> m2 located at the foot of the landslide, which was simultaneously accelerated by 10 m/month during this event. This information contributes to better understand the dynamics of the landslide that evolves from a solid to fluid behavior from the headscarp to the toe. However, a smaller slide that occurred in January 2018 at the headscarp was not detected by this method despite its significant size (10x10<sup>3</sup> m<sup>2</sup>). We attribute this non-detection to a major reshaping of the surface following reactivation.</p><p>This study identified the possibilities and limitations of the proposed treatment method to detect and monitor landslides on a low-slope area located in clayey soils in a temperate climate.</p><p> </p><p>Bontemps, N., Lacroix, P. & Doin, M.-P. (2018) Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sensing of Environment, <strong>210</strong>, 144–158. doi:10.1016/j.rse.2018.02.023</p><p>Lacroix, P., Bièvre, G., Pathier, E., Kniess, U. & Jongmans, D. (2018) Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sensing of Environment, <strong>215</strong>, 507–516. doi:10.1016/j.rse.2018.03.042</p>


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Donatella Dominici ◽  
Sara Zollini ◽  
Maria Alicandro ◽  
Francesca Della Torre ◽  
Paolo Buscema ◽  
...  

Knowledge of a territory is an essential element in any future planning action and in appropriate territorial and environmental requalification action planning. The current large-scale availability of satellite data, thanks to very high resolution images, provides professional users in the environmental, urban planning, engineering, and territorial government sectors, in general, with large amounts of useful data with which to monitor the territory and cultural heritage. Italy is experiencing environmental emergencies, and coastal erosion is one of the greatest threats, not only to the Italian heritage and economy, but also to human life. The aim of this paper is to find a rapid way of identifying the instantaneous shoreline. This possibility could help government institutions such as regions, civil protection, etc., to analyze large areas of land quickly. The focus is on instantaneous shoreline extraction in Ortona (CH, Italy), without considering tides, using WorldView-2 satellite images (50-cm resolution in panchromatic and 2 m in multispectral). In particular, the main purpose of this paper is to compare commercial software and ACM filters to test their effectiveness.


2021 ◽  
Vol 15 (4) ◽  
pp. 101-116
Author(s):  
Lamyaa Gamal El-deen Taha ◽  
Rania Elsayed Ibrahim

The Marina area represents an official new gateway of entry to Egypt and the development of infrastructure is proceeding rapidly in this region. The objective of this research is to obtain building data by means of automated extraction from Pléiades satellite images. This is due to the need for efficient mapping and updating of geodatabases for urban planning and touristic development. It compares the performance of random forest algorithm to other classifiers like maximum likelihood, support vector machines, and backpropagation neural networks over the well-organized buildings which appeared in the satellite images. Images were subsequently classified into two classes: buildings and non-buildings. In addition, basic morphological operations such as opening and closing were used to enhance the smoothness and connectedness of the classified imagery.The overall accuracy for random forest, maximum likelihood, support vector machines, and backpropagation were 97%, 95%, 93% and 92% respectively. It was found that random forest was the best option, followed by maximum likelihood, while the least effective was the backpropagation neural network. The completeness and correctness of the detected buildings were evaluated. Experiments confirmed that the four classification methods can effectively and accurately detect 100% of buildings from very high-resolution images. It is encouraged to use machine learning algorithms for object detection and extraction from very high-resolution images.


2021 ◽  
Vol 264 ◽  
pp. 04007
Author(s):  
Aybek Arifjanov ◽  
Shamshodbek Akmalov ◽  
Shakhzod Shodiev ◽  
Abdukarim Haitov

More than 1,000 satellites are launched into space, and they differ in their functions, rotation orbits, resolution, and other properties. Scientists divide the satellites into low-resolution, medium-resolution, high-resolution, and very high-resolution satellites by their properties. Now, the biggest challenge facing scientists is to use some of these different resolution images in their field. To get the expected result, it is very important to analyze the image that needs an which gives more accurate results. Therefore, the main attention of this article is aimed to find the answer to these problems. In this article 3 satellite images which have different resolution are analyzed. The possibility of middle-resolution images of MODIS, high-resolution images of Landsat, and very high-resolution images of WorldView-2 (WV-2) satellites using GIS are analyzed. A research area was the Syrdarya region, and downloaded different images of satellites of this area and compared with using e Cognition. According to the results, a more accurate satellite image for irrigation sets information is WorldView-2 images. In comparison analysis, it shows more accurate properties than other satellite images. As irrigation sets are small objects for the analysis, very high spatial resolution satellite images are important. Water discharge and surface change happen very fast; thus, it requires daily monitoring of the condition. And in this case, the temporal resolution of the MODIS and Landsat is 16 day, and it is a too long period.


2021 ◽  
pp. 1-11
Author(s):  
Yasser Mostafa ◽  
Mahmoud Nokrashy O. Ali ◽  
Faten Mostafa ◽  
Mohamed Yousef

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Kirill A. Korznikov ◽  
Dmitry E. Kislov ◽  
Jan Altman ◽  
Jiří Doležal ◽  
Anna S. Vozmishcheva ◽  
...  

Very high resolution satellite imageries provide an excellent foundation for precise mapping of plant communities and even single plants. We aim to perform individual tree recognition on the basis of very high resolution RGB (red, green, blue) satellite images using deep learning approaches for northern temperate mixed forests in the Primorsky Region of the Russian Far East. We used a pansharpened satellite RGB image by GeoEye-1 with a spatial resolution of 0.46 m/pixel, obtained in late April 2019. We parametrized the standard U-Net convolutional neural network (CNN) and trained it in manually delineated satellite images to solve the satellite image segmentation problem. For comparison purposes, we also applied standard pixel-based classification algorithms, such as random forest, k-nearest neighbor classifier, naive Bayes classifier, and quadratic discrimination. Pattern-specific features based on grey level co-occurrence matrices (GLCM) were computed to improve the recognition ability of standard machine learning methods. The U-Net-like CNN allowed us to obtain precise recognition of Mongolian poplar (Populus suaveolens Fisch. ex Loudon s.l.) and evergreen coniferous trees (Abies holophylla Maxim., Pinus koraiensis Siebold & Zucc.). We were able to distinguish species belonging to either poplar or coniferous groups but were unable to separate species within the same group (i.e. A. holophylla and P. koraiensis were not distinguishable). The accuracy of recognition was estimated by several metrics and exceeded values obtained for standard machine learning approaches. In contrast to pixel-based recognition algorithms, the U-Net-like CNN does not lead to an increase in false-positive decisions when facing green-colored objects that are similar to trees. By means of U-Net-like CNN, we obtained a mean accuracy score of up to 0.96 in our computational experiments. The U-Net-like CNN recognizes tree crowns not as a set of pixels with known RGB intensities but as spatial objects with a specific geometry and pattern. This CNN’s specific feature excludes misclassifications related to objects of similar colors as objects of interest. We highlight that utilization of satellite images obtained within the suitable phenological season is of high importance for successful tree recognition. The suitability of the phenological season is conceptualized as a group of conditions providing highlighting objects of interest over other components of vegetation cover. In our case, the use of satellite images captured in mid-spring allowed us to recognize evergreen fir and pine trees as the first class of objects (“conifers”) and poplars as the second class, which were in a leafless state among other deciduous tree species.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


Sign in / Sign up

Export Citation Format

Share Document