scholarly journals Finite Element Application in Reservoir Deformation analysis (Part 1)

Author(s):  
R. Ehigiator-Irughe

Finite element method (FEM) is a numerical technique for solving engineering problem and mathematical physics, useful problems with complicated geometries, loading, and material properties where analytical solutions may not be obtained. Some of the complicated problems involving load is a cylindrical reservoir structure where crude oil is stored in a tank farm. This paper demonstrates the use of Finite Element Analysis in above surface cylindrical reservoir engineering structure. The reservoir which has sixteen (16) monitoring station was monitored using reflectorless Total station. This paper is a pilot model and it is hoped to be developed further in two more phases to cover the entire reservoir under study. Only two studs in the North East and South East directions were selected to test the FEM forming a triangular shade (Truss) with three elements. The 2-D horizontal displacement was found to be 0.02 mm, while the vertical displacement was found to be -0.03 mm.

Author(s):  
R. Ehigiator-Irughe ◽  
M.E. Muhammad Muhajir Bin ◽  
M. O. Ehigiator

Finite element method (FEM) is a numerical technique for solving Engineering problem and Mathematical Physics. Useful problems with complicated geometries, Loading, and material properties where analytical solutions may not be obtained. Some of the complicated problems involving load is a cylindrical Reservoir structures where crude oil is stored in a Tank Farm. This paper demonstrates the use of Finite Element Analysis in above surface cylindrical Reservoir Engineering Structure. The reservoir which has sixteen (16) monitoring station was monitored using reflectorless Total station. This paper is the second phase of our pilot model and we hope to developed this second phase further to cover nine studs. The studs covered ranges from northern part of the Reservoir to the southern parts to further test the application of FEM triangular shaded (Truss) elements.


2013 ◽  
Vol 351-352 ◽  
pp. 760-764
Author(s):  
Tie Cheng Wang ◽  
Wen Xing Wang ◽  
Hai Long Zhao ◽  
Qin Shan Li

The influence of diameters and loads on the displacement of truss supporting system is evaluated based on the results of the finite element analysis on the steel-tube truss supporting system of silo. The vertical displacement increases with the increasing of the load. The displacement increases with the increasing of the diameter in the same loads. The maximal displacement appears in the intermediate position of the truss, and the displacements of symmetric nodes are similar under the symmetric loads. The member yields before 30m of truss supporting system reaches the allowable deflection.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2013 ◽  
Vol 838-841 ◽  
pp. 779-785
Author(s):  
Liang Gu

The double-row piles supporting structure is a new type of supporting and protecting for deep foundation excavation. It is widely used to in design of deep foundation pit. Now how to simply and effectively design the structure of double-row piles is in a research and discuss stage. Using the Midas GTS finite element method, the displacement and stress distribution of double-row piles in the different stages of excavation are obtained, and the horizontal displacement and stress distribution of double-row piles in the different stages of excavation are calculated. The results of Midas GTS finite element analysis as follows: (1) after the excavation of foundation pit, the horizontal displacement of pile-top is maximum. The horizontal displacement decreases gradually with depth increases. And the displacement of front row piles is larger than that of back row piles; (2) the maximum shear stress is at the distance 5m to the foundation basement. The higher bending moment at the pile-top and the distance 10m to the foundation basement are consistent with the actual monitoring date. (3) the results of finite element analysis is close to the Richard software and actual monitoring data. It is show that using the finite element analysis to analyze the double-row piles supporting structure with is veritable and credible.


Author(s):  
Kaijun Zhu ◽  
Yu Qian ◽  
J. Riley Edwards ◽  
Bassem O. Andrawes

A rail joint typically is one of the weakest elements of a track superstructure, primarily because of discontinuities in its geometric and mechanical properties and the high-impact loads induced by these discontinuities. The development of continuously welded rail has significantly reduced the number of rail joints, but many bolted joints remain installed in rail transit systems. Because of the unique loading environment of a rail transit system (especially high-frequency, high-repetition loads), defects related to bolted rail joints (e.g., joint bar failures, bolt hole cracks, and cracks in the upper fillet) continue to cause service failures and can pose derailment risks. Recent research in the Rail Transportation and Engineering Center at the University of Illinois at Urbana–Champaign has focused on investigating crack initiation in the bolt hole and fillet areas of bolted rail joints. Stress distribution was investigated at the rail-end bolt hole and upper fillet areas of standard, longer, and thicker joint bars under static loading conditions. Numerical simulations were organized into a comprehensive parametric analysis performed with finite element modeling. Preliminary results indicated that the longer joint bar performed similarly to the standard joint bar but the thicker joint bar reduced rail vertical displacement and rail upper fillet stresses compared with the standard joint bar. However, the thicker joint bar also may generate higher stresses at the rail-end bolt hole. Additionally, joint bar performance was dependent on the rail profile and bolt hole location.


2011 ◽  
Vol 58-60 ◽  
pp. 198-204
Author(s):  
Feng Shou Zhang ◽  
Don Gyan Wang ◽  
Jian Ting Liu ◽  
Feng Kui Cui

Friction between the guideway and the bench of large-type CNC lathe will cause thermal deformation of the guideway, which causes processing error of the lathe,thereby reduces machining precision of the workpiece. The authors establish the mathematical model of temperature field and thermal deformation of the guideway in the work process, numerically simulate the guideway thermal characteristics by ANSYS finite element analysis software, and obtain the distribution regularities of temperature field and thermal deformation and their major influencing factors, which provide a theoretical basis for optimizing design and thermal error compensation design of the lathe guideway.


1995 ◽  
Vol 117 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Fuh-Kuo Chen

The shear properties of different simple-shear sheet specimens were investigated using the elastic-plastic finite element method. Tension loaded specimens with a shear zone formed at the center area between two transverse slots were adopted to analyze the shear properties of sheet metals under uniaxial tension. Specimens prepared by single material as well as by bonding two different strength materials together were both studied. Since the shear zone could not be kept free from bending stress during loading, the pure shear deformation was not possibly obtained. However, by varying the shape and the location of the slots, an optimum geometry of the shear zone which yields a nearly pure shear deformation in the plastic range was determined through the finite element analysis. The results also revealed when the shear zone was formed by a low strength material which was bonded on each side with a higher strength material, a nearly pure shear deformation could be obtained even in the elastic range.


Author(s):  
Shazia M. Alam ◽  
Mahdy Allam ◽  
Chittaranjan Sahay

The compressor stator assembly of a jet engine normally consists of stainless steel and Inconel alloys. Nickel based alloys can be also used as brazing material. Mechanical distortion of the stator assembly components may result during the brazing process. The coefficient of thermal expansion of the component materials, thermal history of manufacturing and operation also contribute to the stator deformation. The purpose of this work is to study the factors causing the distortion in vane stages. The study uses Finite Element Analysis tool ANSYS 5.7 for modeling the engine stator assembly. A finite element structural analysis of a single airfoil model is conducted at various repair points to assess the airfoil deformation and stress levels, before and after the brazing process. It is then used to identify materials and brazing parameters responsible for the observed distortion. The model analyzed shows general agreement between the numerical results and observations from the repair process. The probable causes of distortion are found and recommendations for fixing the distortion problem are also made.


2012 ◽  
Vol 204-208 ◽  
pp. 1748-1753
Author(s):  
Jing Cai ◽  
Zong Bao Yue

In the airport pavement design, the critical load position has the guiding significance for the airport pavement slab design. The finite element analysis model of rigid airport pavement is built, and 2-slab model and 9-slab model are analyzed. The corresponding load positions are obtained when the maximum stress and the maximum vertical displacement happen


2012 ◽  
Vol 461 ◽  
pp. 21-25
Author(s):  
Cheng Jun Zhu ◽  
Xiao Jing Li

Finite element analysis is an advanced technology, by which a complicated engineering problem can be solved by theory analysis. Firstly, we build a 3D model of a hydraulic component under 3D software environment. Then the component model is load into FEA module. Subsequently, the model is meshed and set the outer loading. At last, the analysis step is conducted and get the result. The result showed the optimized structure of component. It assumed that the study result have some value for further improved design


Sign in / Sign up

Export Citation Format

Share Document