Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Madlen Borkmann ◽  
Achim Mahrle

In cutting metals with solid-state lasers, a characteristic cutting edge structure is generated whose formation mechanisms still elude a consistent explanation. Several studies suggest a major contribution of the pressurized gas flow. Particular emphasis must be devoted to the gas boundary layer and its developing flow characteristics, since they determine the heat and momentum exchange between the cutting gas and the highly heated melt surface and thus the expulsion of the molten material from the kerf. The present study applies a CFD simulation model to analyze the gas flow during laser cutting with appropriate boundary conditions. Specifically, the gas boundary layer development is considered with a high spatial discretization of this zone in combination with a transition turbulence model. The results of the calculation reveal for the first time that the boundary layer is characterized by a quasi-stationary vortex structure composed of nearly horizontal geometry- and shock-induced separation zones and vertical vortices, which contribute to the transition to turbulent flow. Comparison of the results with the striation structure of experimental cut edges reveals a high agreement of the location, orientation, and size of the characteristic vortices with particular features of the striation structure of cut edges.











It is shown that the boundary layer approximation to the flow of a viscous fluid past a flat plate of length l , generally valid near the plate when the Reynolds number Re is large, fails within a distance O( lRe -3/4 ) of the trailing edge. The appropriate governing equations in this neighbourhood are the full Navier- Stokes equations. On the basis of Imai (1966) these equations are linearized with respect to a uniform shear and are then completely solved by means of a Wiener-Hopf integral equation. The solution so obtained joins smoothly on to that of the boundary layer for a flat plate upstream of the trailing edge and for a wake downstream of the trailing edge. The contribution to the drag coefficient is found to be O ( Re -3/4 ) and the multiplicative constant is explicitly worked out for the linearized equations.



Author(s):  
Miloš Madić ◽  
Mohamed H Gadallah ◽  
Dušan Petković

For an efficient use of laser cutting technology, it is of great importance to analyze the impact of process parameters on different performance indicators, such as cut quality criteria, productivity criteria, costs as well as environmental performance criteria (energy and resource efficiency). Having this in mind, this study presents the experimental results of CO2 laser fusion cutting of AISI 304 stainless steel using nitrogen, with the aim of developing a semi-empirical mathematical model for the estimation of process efficiency as an important indicator of the achievable energy transfer efficiency in the cutting process. The model was developed by relating the theoretical power needed to melt the volume per unit time and used laser power, where the change of kerf width was modeled using an empirical power model in terms of laser cutting parameters such as laser power, cutting speed, and focus position. The obtained results indicated the dominant effect of the focus position on the change in process efficiency, followed by the cutting speed and laser power. In addition, in order to maximize process efficiency and simultaneously ensure high cut quality without dross formation, a laser cutting optimization problem with constraints was formulated and solved. Also, a multi-objective optimization problem aimed at simultaneous optimization of process efficiency and material removal rate was formulated and solved, where the determined set of Pareto non-dominated solutions was analyzed by using the entropy method and multi-criteria decision analysis method, that is, the Technique for Order of Preference by Similarity to Ideal Solution. The optimization results revealed that in order to enhance process efficiency and material removal rate, while ensuring high cut quality without dross formation, focusing the laser beam deep into the bulk of material is needed with particular trade-offs between laser power and cutting speed levels at high pressure levels of nitrogen.



2020 ◽  
Vol 32 (2) ◽  
pp. 022068 ◽  
Author(s):  
S. Stoyanov ◽  
D. Petring ◽  
D. Arntz-Schroeder ◽  
M. Günder ◽  
A. Gillner ◽  
...  


2020 ◽  
Vol 60 ◽  
pp. 470-480
Author(s):  
Jannik Lind ◽  
Florian Fetzer ◽  
Christian Hagenlocher ◽  
David Blazquez-Sanchez ◽  
Rudolf Weber ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document