The effect of ethanol on the development of oxidative stress and endothelial dysfunction

2020 ◽  
Vol 21 (3) ◽  
pp. 143-149
Author(s):  
I. A. Chernov ◽  
◽  
Yu. A. Kirillov ◽  
D. A. Areshidze ◽  
M. A. Kozlova ◽  
...  

The review focuses on the pathogenetic mechanisms of ethanol influence on the development of oxidative stress (OS) and endothelial dysfunction (ED). It is shown that both in acute and chronic alcohol intoxication, the intake of ethanol in the body initiates the development of OS, the formation of reactive oxygen species, causes a decrease in the content of endothelium-derived relaxing factors (nitric oxide (NO), prostacyclin, endothelium-derived hyperpolarization factor (EDHF)), an increase in the concentration of endothelium-derived constricting factors (endothelin, angiotensin-II), thereby causing the development of ED. When alcohol is consumed in small doses by healthy non-drinkers, ethanol can act as an antioxidant, cause the neutralization of reactive oxygen species, promote the formation of NO, and prevent the formation of ED. Currently used methods for evaluating ED allow us to characterize the functional state of the endothelium. Structural changes in the blood vessel wall as a manifestation of ED in alcoholic disease are not sufficiently described, which indicates the need to study them using modern histological, histochemical, immunohistochemical and electron microscopic methods.

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Amrit Kaur Bansal ◽  
G. S. Bilaspuri

Oxidative stress (OS) has been considered a major contributory factor to the infertility. Oxidative stress is the result of imbalance between the reactive oxygen species (ROS) and antioxidants in the body which can lead to sperm damage, deformity, and eventually male infertility. Although high concentrations of the ROS cause sperm pathology (ATP depletion) leading to insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability but, many evidences demonstrate that low and controlled concentrations of these ROS play an important role in sperm physiological processes such as capacitation, acrosome reaction, and signaling processes to ensure fertilization. The supplementation of a cryopreservation extender with antioxidant has been shown to provide a cryoprotective effect on mammalian sperm quality. This paper reviews the impacts of oxidative stress and reactive oxygen species on spermatozoa functions, causes of ROS generation, and antioxidative strategies to reduce OS. In addition, we also highlight the emerging concept of utilizing OS as a tool of contraception.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 101 ◽  
Author(s):  
Andrey Y. Abramov ◽  
Elena V. Potapova ◽  
Viktor V. Dremin ◽  
Andrey V. Dunaev

Aggregation of the misfolded proteins β-amyloid, tau, huntingtin, and α-synuclein is one of the most important steps in the pathology underlying a wide spectrum of neurodegenerative disorders, including the two most common ones—Alzheimer’s and Parkinson’s disease. Activity and toxicity of these proteins depends on the stage and form of aggregates. Excessive production of free radicals, including reactive oxygen species which lead to oxidative stress, is proven to be involved in the mechanism of pathology in most of neurodegenerative disorders. Both reactive oxygen species and misfolded proteins play a physiological role in the brain, and only deregulation in redox state and aggregation of the proteins leads to pathology. Here, we review the role of misfolded proteins in the activation of ROS production from various sources in neurons and glia. We discuss if free radicals can influence structural changes of the key toxic intermediates and describe the putative mechanisms by which oxidative stress and oligomers may cause neuronal death.


2020 ◽  
Vol 25 (2) ◽  
pp. 76
Author(s):  
Eka Pratama Putri ◽  
Sri Rahayu Lestari ◽  
Abdul Gofur

Hyperglycemia conditions increase free radicals in the body that cause oxidative stress. Oxidative stress increase lipid peroxidation activity and reactive oxygen species (ROS). An antioxidant can prevent a free radical movement. The materials that contain potent antioxidants are black soybeans tempeh (BST) and purple sweet potatoes (PSP). The antioxidants in the BST are isoflavones with their derivates, and PSP is anthocyanins. This study aimed to determine the effect of BST and PSP extract on reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In this study, rats were given a high-fat diet, 10% sucrose drink, and injected with multiple low-dose streptozotocin to induce T2DM. The animal's experiment divided into six groups: healthy rats, DM rats, DM rats + glibenclamide, DM rats + combination of BST and PSP in 3:1, 1:1, and 1:3 respectively. ROS levels were determined using the ELISA method and MDA levels were determined using spectrophotometer according to Thiobarbituric Acid (TBA) method. Our result suggests that the combination of BST and PSP significantly reduces ROS and MDA levels.


2021 ◽  
pp. 48-58
Author(s):  
A. P. Pereverzev ◽  
R. R. Romanovskii ◽  
N. A. Shatalova ◽  
O. D. Ostroumova

According to the theory of inflammaging, aging of the body and the development of age-related diseases are a consequence of a chronic progressive generalized inflammatory process that develops and persists throughout life under the influence of negative factors of an infectious and non-infectious nature. Inflammaging has a number of features that distinguish it from acute inflammation: a chronic nature of inflammation, a low level of inflammation, blurry clinical state (in the early stages of clinical manifestations there may not be any at all). The key pathogenetic role in inflammation plays age-associated changes in the innate immune system, which are referred to in the English literature as “immunosenescence” and oxidative stress. The main source of reactive oxygen species and free radicals in the cells are mitochondria. With age, the concentration of intracellular glutathione, one of the main factors of the antioxidant protection of the cell, decreases and a pathological condition arises in which the rate of production of free radicals and reactive oxygen species significantly exceeds the antioxidant capabilities, which leads to the formation of oxidative stress and disruption of the structure and function of cells. Oxidative stress, inflammation and neuroinflammation are closely related to cognitive impairment, pathological state that is often observed in a group of elderly and senile patients. Further study of the pathogenesis of Inflammaging and the role of oxidative stress in it will potentially lead to development of methods to slow down aging and treat age-related cognitive impairments.


2011 ◽  
Vol 301 (4) ◽  
pp. E599-E607 ◽  
Author(s):  
Le Zhang ◽  
Philip J. Ebenezer ◽  
Kalavathi Dasuri ◽  
Sun Ok Fernandez-Kim ◽  
Joseph Francis ◽  
...  

As a part of aging there are known to be numerous alterations which occur in multiple tissues of the body, and the focus of this study was to determine the extent to which oxidative stress and hypoxia occur during adipose tissue aging. In our studies we demonstrate for the first time that aging is associated with both hypoxia (38% reduction in oxygen levels, Po2 21.7 mmHg) and increases reactive oxygen species in visceral fat depots of aging male C57Bl/6 mice. Interestingly, aging visceral fat depots were observed to have significantly less change in the expression of genes involved in redox regulation compared with aging subcutaneous fat tissue. Exposure of 3T3-L1 adipocytes to the levels of hypoxia observed in aging adipose tissue was sufficient to alter multiple aspects of adipose biology inducing increased levels of in insulin-stimulated glucose uptake and decreased lipid content. Taken together, these data demonstrate that hypoxia and increased levels of reactive oxygen species occur in aging adipose tissue, highlighting the potential for these two stressors as potential modulators of adipose dysfunction during aging.


MedPharmRes ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  
Binh Vong ◽  
Thuy Trinh ◽  
Nghiep Ngo ◽  
◽  
◽  
...  

Reactive oxygen species (ROS) or oxidative stress has been reported with strongly involving to pathogenesis of many diseases in human. On the other hand, ROS play a critical regulation as secondary signal to maintain intracellular redox equilibrium. Basically, the antioxidant defense systems in the body counteract with overproduced ROS. However, when the redox balance is broken under severe oxidative stress conditions, it leads to tissue injuries and numerous disorders. In this review, we briefly introduce the systems of ROS and antioxidants systems in the body and discuss the opposite roles of ROS in normal physiological conditions and diseases. For ROS-related diseases, conventional and currently developed antioxidant therapies are also described in this review.


2019 ◽  
Vol 25 (2) ◽  
Author(s):  
Manorma Singh

Free radicals and oxidants play a dual role as both toxic and beneficial compounds, since they can be either harmful or helpful to the body. They are produced either from normal cell metabolisms in situ or from external sources (pollution, cigarette smoke, radiation, medication). When an overload of free radicals cannot gradually be destroyed, their accumulation in the body generates a phenomenon called oxidative stress. This process plays a major part in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular and neurodegenerative diseases. Cardiovascular diseases (CVDs) have been the prime cause of mortality worldwide for decades. However, the underlying mechanism of their pathogenesis is not fully clear yet. It has been already established that reactive oxygen species (ROS) play a vital role in the progression of CVDs. ROS are chemically unstable reactive free radicals containing oxygen, normally produced by xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidase, lipoxygenases or mitochondria or due to the uncoupling of nitric oxide synthase in vascular cells. When the equilibrium between production of free radicals and antioxidant capacity of human physiology gets altered due to several pathophysiological conditions, oxidative stress is induced, which in turn leads to tissue injury. The information generated by this review aims to provide updated insights into the understanding of the mechanisms behind cardiovascular complications mediated by ROS.


2018 ◽  
Vol 100 ◽  
pp. 1-19 ◽  
Author(s):  
Maria Angela Incalza ◽  
Rossella D'Oria ◽  
Annalisa Natalicchio ◽  
Sebastio Perrini ◽  
Luigi Laviola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document