scholarly journals Study of Converted-Wave Modeling: AVO Application for Shallow Gas Models

2018 ◽  
Vol 16 (2) ◽  
pp. 19 ◽  
Author(s):  
Natashia Christy Viony ◽  
Wahyu Triyoso

The application of converted-wave seismic method in hydrocarbon exploration has increased significantly. Since the conventional seismic ceases to provide an adequate result in complex geology area and it provides an ambiguous brightspot response. The main principle is that an incident P-wave produces reflected and converted P and SV wave when the downgoing P-wave impinges on an interface. Converted-wave seismic uses the multicomponent receiver that records both of vertical component and horizontal component. The vertical component is assumed to correspond to the compressional PP wave and the horizontal correspond to the PS converted-wave. In this research, a synthetic model with the shallow gas and the salt dome below are constructed. The purpose of this study is to analyze the brightspot due to the presence of shallow gas and its effect to the quality of PP and PS wave reflection below the gas zone. To achieve the goal, both vertical and horizontal seismic data processing are performed. In horizontal data processing, the best gamma function (Vp/Vs) value is estimated to produce the better and reliable image. The result shows that the brightspot response in conventional data doesn’t exist in converted-wave data and the imaging below the gas zone in converted-wave data is better than the conventional due to the attenuation and diffraction effect that caused by gas column. Processing is followed by AVO analysis to compare the AVO response of PP and PS data in characterizing gas reservoir. Both PP and PS AVO curve shows the consistency with synthetic AVO from well data. Gas reservoir is a class 1 AVO anomaly with positive intercept and negative gradient on PP data. However, PS AVO curve does not refer any anomaly. It is because S-wave is not sensitive to the existence of rock saturant.

2020 ◽  
Vol 43 (2) ◽  
pp. 53-58
Author(s):  
Wahyu Triyoso ◽  
Jefri B. Irawan ◽  
Natasha C. Viony ◽  
Fatkhan Fatkhan

A high-quality image of the PS component is needed since applying the converted-wave seismic method has increased significantly in hydrocarbon exploration, especially in interpreting the detail and complexity of structure or reservoir zones. The incident P-wave on a surface produces a reflected and converted P-S wave. Converted-wave seismic uses the multicomponent receiver that records both vertical and horizontal components. The vertical component is assumed to correspond to the compressional PP wave, and the horizontal corresponds to the PS converted-wave. To better understand how to image better the PS component, synthetic seismic data with the shallow gas and relatively complex model are constructed by the full-waveform modeling. This study aims to improve the imaging quality in the PS section to remove the residual PP events on the horizontal data refer to our previous study. In this study, to obtain the more reliable PS data, the residual PP reflections have been removed by applying the Zero Offset Common Reflection Surface (ZO CRS) Stack of the PS component. The results of this study, the imaging quality is better than that in the previous study.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


2016 ◽  
Vol 4 (2) ◽  
pp. T183-T190 ◽  
Author(s):  
Michael V. De Angelo ◽  
Bob A. Hardage

We acquired 3D multicomponent data in Andrews County, Midland Basin, West Texas with a seismic survey. We extracted direct-SV modes generated by a vertical-force source (an array of three inline vertical vibrators) from the vertical component of multicomponent geophones. This seismic mode, SV-P, was created by reprocessing legacy 2D/3D P-wave seismic data to create converted-wave data and consequently forgoing the need for a multicomponent seismic acquisition program to obtain important S-wave information from the subsurface. We have compared P-P, P-SV, and SV-P traveltime and amplitude characteristics to determine which seismic mode provided better characterization of the targeted reservoirs and reduced exploration risk.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 504-507 ◽  
Author(s):  
Franklyn K. Levin

Tessmer and Behle (1988) show that S-wave velocity can be estimated from surface seismic data if both normal P-wave data and converted‐wave data (P-SV) are available. The relation of Tessmer and Behle is [Formula: see text] (1) where [Formula: see text] is the S-wave velocity, [Formula: see text] is the P-wave velocity, and [Formula: see text] is the converted‐wave velocity. The growing body of converted‐wave data suggest a brief examination of the validity of equation (1) for velocities that vary with depth.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas Davis

The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.


Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. U29-U36 ◽  
Author(s):  
Mirko van der Baan

Common-midpoint (CMP) sorting of pure-mode data in arbitrarily complex isotropic or anisotropic media leads to moveout curves that are symmetric around zero offset. This greatly simplifies velocity determination of pure-mode data. Common-asymptotic-conversion-point (CACP) sorting of converted-wave data, on the other hand, only centers the apexes of all traveltimes around zero offset in arbitrarily complex but isotropic media with a constant P-wave/S-wave velocity ratio everywhere. A depth-varying CACP sorting may therefore be required to position all traveltimes properly around zero offset in structurally complex areas. Moreover, converted-wave moveout is nearly always asymmetric and nonhyperbolic. Thus, positive and negative offsets need to be processed independently in a 2D line, and 3D data volumes are to be divided in common azimuth gathers. All of these factors tend to complicate converted-wave velocity analysis significantly.


2017 ◽  
Vol 5 (4) ◽  
pp. T579-T589 ◽  
Author(s):  
Menal Gupta ◽  
Bob Hardage

P-SV seismic acquisition requires 3C geophones and thus has greater cost compared with conventional P-P data. However, some companies justify this added cost because P-SV data provide an independent set of S-wave measurements, which can increase the reliability of subsurface property estimation. This study investigates SV-P data generated by a vertical vibrator and recorded by vertical geophones as a cost-effective alternative to traditional P-SV data. To evaluate the efficacy of the SV-P mode relative to the P-P and P-SV modes, multicomponent seismic data from Wellington Field, Kansas, were interpreted. P-P amplitude variation with offset (AVO) gathers and stacked SV-P seismic data were jointly inverted to estimate elastic properties, which were compared with the estimates obtained from joint inversion of P-P AVO gathers, stacked P-SV seismic data, and inversion of P-P AVO gathers data. All inversions provide identical P-impedance characteristics. However, a significant improvement in S-impedance estimates is observed when P-P and converted wave data (either SV-P or P-SV) are inverted jointly, compared with P-P inversion results alone. In the Arbuckle interval, which is being considered for [Formula: see text] injection, use of converted-wave data clearly demarcates the Middle Arbuckle baffle zone and the Lower Arbuckle injection zone, with the latter having low P- and S-impedances. These observations, although consistent with other well-based geologic evidence, are absent on P-P-only inversion results. No major difference in the inversion results is seen when SV-P data are used instead of P-SV data. Moreover, we determine for the first time by comparing the SV-P image obtained from vertical-vibrator data and the SV-P image obtained from horizontal-vibrator data that both data image subsurface geology equivalently, except for the important distinction that the former contains more valuable higher frequencies than the latter. Because legacy P-wave data can be reprocessed to extract the SV-P mode, using SV-P data can provide a unique way to perform multicomponent seismic analysis.


2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


Sign in / Sign up

Export Citation Format

Share Document