IMPLEMENTASI AR DENGAN METODE MARKER SEBAGAI KATALOG PADA TOKO MEBEL BERBASIS WEB-AR.pdf

2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Aulia Sari Prihatini ◽  
Mahrizal Masri ◽  
Mhd. Zulfansyuri Siambaton

Reality Increasing or often also called AR (Augmented Reality) in English, is a technology that can add two-dimensional or three-dimensional illusions of objects together into a 3D into the real world then project illusion objects into real time. Unlike the illusion of reality where in the real world is completely replaced, reality only adds to or completes reality. Augmented Reality unites real objects and illusions into real circles, works interactively in real time and found integration between objects in 3D and good integration requires effective investigation. Web AR provides Web-based access using Augmented Reality through a web browser using a combination of technologies including WebRTC, WebGL, WebVR, and Modern APLs sensors. Catalogs are publicity tools used by companies as a way to promote their products and services. Examples of companies that use catalogs are Furniture stores that promote products. Here it will be visualized into 3D until it looks more clear and attractive to consumers. So, based on the description above, the author takes the title "Implementation of Augmented Reality with Marker Method as Media Catalog in AR-Based Furniture Stores. Keywords: Augmented Reality, WEB AR, catalog

2018 ◽  
Author(s):  
Uri Korisky ◽  
Rony Hirschhorn ◽  
Liad Mudrik

Notice: a peer-reviewed version of this preprint has been published in Behavior Research Methods and is available freely at http://link.springer.com/article/10.3758/s13428-018-1162-0Continuous Flash Suppression (CFS) is a popular method for suppressing visual stimuli from awareness for relatively long periods. Thus far, it has only been used for suppressing two-dimensional images presented on-screen. We present a novel variant of CFS, termed ‘real-life CFS’, with which the actual immediate surroundings of an observer – including three-dimensional, real life objects – can be rendered unconscious. Real-life CFS uses augmented reality goggles to present subjects with CFS masks to their dominant eye, leaving their non-dominant eye exposed to the real world. In three experiments we demonstrate that real objects can indeed be suppressed from awareness using real-life CFS, and that duration suppression is comparable that obtained using the classic, on-screen CFS. We further provide an example for an experimental code, which can be modified for future studies using ‘real-life CFS’. This opens the gate for new questions in the study of consciousness and its functions.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


SISFOTENIKA ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 152
Author(s):  
Joe Yuan Mambu ◽  
Andria Kusuma Wahyudi ◽  
Brily Latusuay ◽  
Devi Elwanda Supit

<p>In learning projectile motion and its velocity, students tend to look up a plain two-dimensional image in a science book. While there’s some educational props, yet they usually a very tradional ones and can not be used for real calculation. The utilization of Augmented Reality (AR) in educational method may raise curiosity and gives a unique way in learning projectile motion as the motion can be seen in a three dimensional. Augmented Reality itself is a combination of real world and virtual objects. This application uses the Vuforia SDK that able to blend the real world and virtual objects. Through this application, we were able to simulate projectile motion and its velocity in more realistic way, have slightly interaction with the reality, and gets input from user so they can learn and see the result of the parameter that they entered. Thus, with the advantage of AR the application gives a more realistic feel compared to the existing ones available in public as it could receive any input and show the output in AR. </p>


2015 ◽  
Vol 2 (1) ◽  
pp. 77
Author(s):  
Tonny Hidayat

Augmented Reality adalah sebuah teknologi yang relatif baru dan masih dikembangkan sampai saat ini. Konsepnya adalah menggabungkan dimensi dunia nyata dengan dimensi 'dunia nyata' yang termediasi, atau dunia virtual, untuk menciptakan kesan bahwa dimensi dunia nyata kita diperkaya dengan objek maya tiga dimensi. Hal ini dilakukan dengan cara 'menggambar' objek tiga dimensi pada marker, yakni sebuah 'pola' dalam bingkai segi empat yang bersifat unik dan dapat dikenali oleh aplikasinya. Aplikasi yang bersangkutan menerima input berupa video stream, yang berarti menggunakan input berupa citraan dari perangkat keras yang berfungsi menangkap gambar, biasanya sebuah webcam. Karena berupa video stream, artinya gambaran yang ditangkap sebagai input akan berubah-ubah, dan program harus dapat tetap mengenali marker meskipun berubah posisi dan orientasi relatif terhadap perangkat input. Pengenalan terhadap posisi dan pergerakan ini adalah salah satu konsep Teknologi Informasi yang bernama Computer Vision, dan digunakan untuk mendeteksi pola pergerakan relatif objek terhadap kamera.Pendidikan terhadap anak harus dilakukan sedini mungkin terutama dalam hal kesehatan. Seiring dengan berkembangnya pemahaman masyarakat tentang pentingnya kesehatan gigi, banyak pihak yang telah memberikan informasi terkait kesehatan gigi di berbagai media. Tidak hanya orang dewasa yang menjadi sasaran akan tetapi juga mulai dari anak-anak sudah dikenalkan dengan pengetahuan tersebut. Karena dibutuhkan media penyampaian untuk anak maka banyak bermunculan media edukasi yang diharapkan bisamendidik anak dengan berbagai macam cara..Pemanfaatan Augmented Realitysebagai alat untuk mengedukasi anak, ini akan memberikan pandangan baru terhadap media edukasi yang ada pada saat ini, bukan hanya menggunakan objek secara nyata tapi juga bisa digunakan objek berbentuk virtual dalam penyampaian informasi. Nilai tambah dari media ini adalah mempermudah penyampaian dan membuat informasi semakin menarik terutama bagi anak.Augmented Reality is a technology that is relatively new and still being developed today. The concept is to combine real-world dimensions to the dimensions of the 'real world' are mediated, or the virtual world, to create the impression that the dimensions of the real world we are enriched by virtual three-dimensional objects. This is done by 'drawing' a three-dimensional object on the marker, which is a 'pattern' in a rectangular frame that is unique and can be recognized by the application. Pertinent application accepts input in the form of a video stream, which means using the input in the form of images of the hardware image capture function, typically a webcam. Because the form of a video stream, meaning that as the input image captured will vary, and programs must be able to recognize the markers remained unchanged despite the position and orientation relative to the input device. Introduction to the position and movement is one of the Information Technology concept called Computer Vision, and is used to detect object movement patterns relative to the camera.Education of children should be done as early as possible, especially in terms of health. Along with the development of public understanding about the importance of dental health, many people who have provided information related to dental health in a variety of media. Not only adults who were targeted but also start from the children has been introduced with such knowledge. Because it takes delivery of media for children then many emerging medium of education is expected to educate children with a variety of ways.Utilization of Augmented Reality as a tool to educate the child, this will provide a new perspective on media education that existed at this time, instead of just using the real object but also can be used in the form of a virtual object in the delivery of information. The added value of this medium is to facilitate the delivery and make the information more interesting, especially for children.


Author(s):  
Anang Pramono ◽  
Martin Dwiky Setiawan

The concept of education for children is important. The aspects that must be considered are methods and learning media. In this research innovative and alternative learning media are made to understand fruits for children with Augmented Reality (AR). Augmented Reality (AR) in principle is a technology that is able to combine two-dimensional or three-dimensional virtual objects into a real environment and then project it. This learning media combines picture cards and virtual reality. Markers contained on picture cards will be captured by the mobile device camera, processed and will 3D animated pieces appear on the mobile screen in realtime. By using the concept of combining real world, real images on cards and virtual, applications can stimulate imagination and sense of desire in children and motivation to learn more and more. 3D fruit estimation created using the 3D Blender application and the Augmented Rea process lity is made using Unity and the Vuforia SDK library. The application of fruit recognition has been applied to several child respondents and has been tested on several types and brands of Android-based mobile phones. Based on research trials, 86% of 30 respondents stated that the application which was developed very effectively as a medium for the introduction of fruits.


2017 ◽  
Vol 17 (02) ◽  
pp. e20 ◽  
Author(s):  
Kevin E. Soulier ◽  
Matías Nicolás Selzer ◽  
Martín Leonardo Larrea

In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.


Author(s):  
Shohei Mori ◽  
Hideo Saito

Over 20 years have passed since a free-viewpoint video technology has been proposed with which a user's viewpoint can be freely set up in a reconstructed three-dimensional space of a target scene photographed by multi-view cameras. This technology allows us to capture and reproduce the real world as recorded. Once we capture the world in a digital form, we can modify it as augmented reality (i.e., placing virtual objects in the digitized real world). Unlike this concept, the augmented world allows us to see through real objects by synthesizing the backgrounds that cannot be observed in our raw perspective directly. The key idea is to generate the background image using multi-view cameras, observing the backgrounds at different positions and seamlessly overlaying the recovered image in our digitized perspective. In this paper, we review such desired view-generation techniques from the perspective of free-view point image generation and discuss challenges and open problems through a case study of our implementations.


2019 ◽  
Vol 9 (15) ◽  
pp. 3124
Author(s):  
Qiang Li ◽  
Huan Deng ◽  
Senlin Pang ◽  
Wenhao Jiang ◽  
Qionghua Wang

In this paper, we propose a reflective augmented reality (AR) display system based on integral imaging (II) using a mirror-based pinhole array (MBPA). The MBPA, obtained by punching pinholes on a mirror, functions as a three-dimensional (3D) imaging device, as well as an image combiner. The pinhole array of MBPA can realize a pinhole array-based II display, while the mirror of MBPA can image the real objects, so as to combine the images of the real objects with the reconstructed 3D images. The structure of the proposed reflective AR display is very simple, and only a projection system or a two-dimensional display screen is needed to combine with the MBPA. In our experiment, a 25cm × 14cm sized AR display was built up, a combination of a 3D virtual image and a real 3D object was presented by the proposed AR 3D display. The proposed device could realize an AR display of large size due to its compact form factor and low weight.


Author(s):  
Dewi Agushinta R. ◽  
Ihsan Jatnika ◽  
Henny Medyawati ◽  
Hustinawaty Hustinawaty

Augmented Reality (AR) is one of the popular technologies nowadays. Along with the technological advances, Augmented Reality is an effort to combine the real world and virtual worlds created through computers so that the boundary between the two becomes very thin because Augmented Reality allows users to interact in real-time with the system. Augmented Reality can be applied in various fields according to the needs of each user. One application is on Android-based mobile hardware applications. This research developed the Augmented Reality battle with some of the features more interactive, interesting and clearer information to facilitate the user in its operation. This Augmented Reality is applied to the Android mobile device with the name of FruitGarden. This paper presented of designing Augmented Reality for recognizing the fruit of Indonesia archipelago which will give a different view of performing the fruit image and information.


Sign in / Sign up

Export Citation Format

Share Document