scholarly journals SETTING A DIAGRAM APPROACH TO CALCULATING VIBRATED, CENTRIFUGED AND VIBROCENTRIFUGED REINFORCED CONCRETE COLUMNS WITH A VARIATROPIC STRUCTURE

Author(s):  
L. R. Mailyan ◽  
S. A. Stel'makh ◽  
E. M. Shcherban ◽  
M. P. Nazhuev

Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed.Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.

Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2018 ◽  
Vol 931 ◽  
pp. 321-327
Author(s):  
Viktor A. Muradyan

The article deals with the main advantages of reinforced concrete columns with recessed fittings. The method of testing the prototype columns is described. In addition, the influence of various factors on the fracture pattern and bearing capacity of such columns is explained. The standard reinforced concrete columns are given below and the optimal parameters for saving reinforcing steel are observed [1-7].


2013 ◽  
Vol 10 (6) ◽  
pp. 497-506 ◽  
Author(s):  
Jure Radnic ◽  
Radoslav Markic ◽  
Alen Harapin ◽  
Domagoj Matesan ◽  
Goran Baloevic

The results of experimental testing of stirrup effects on compressive strength and ductility of axially loaded confined reinforced concrete columns of rectangular cross-section are presented. Effects of different concrete strengths, different stirrup bar diameters and different stirrup spacing on column's bearing capacity and ductility have been researched.


Determination of the bearing capacity of the elements damaged as a result of fire effect depends on the accuracy of the thermo-technical calculation. After this calculation, the distribution of the temperature field over the cross section of the element and the strength characteristics depending on it are determined. The temperature distribution over the cross section of the element depends on such parameters as heat capacity and thermal conductivity of parts of the section, the spatial position of the structure, its humidity. As part of this work, heat engineering calculations of the cross section of the reinforced concrete column were performed with various options of the cross section - with and without a protective layer, taking into account the thermal performance of all cross section components (reinforcement, concrete and corrosion) and excluding corrosion and reinforcement. Based on the obtained temperature fields, the bearing capacity and its percentage ratio were calculated. The main conclusion is that the bearing capacity of the centrally compressed corrosion-damaged elements is significantly influenced by the factor of separation of the protective layer of concrete, as well as thermal-technical characteristics of materials.


2021 ◽  
Author(s):  
I.N. Starishko

Extensive experimental researches of the author of the article showed that in T-profile beams, despite the fact that with an increase in the length of the shear span, the bearing capacity along inclined sections significantly decreases, the effect of overhangs of compressed flanges on the bearing capacity of these beams, on the contrary, increases, and when, with an increase in the length of the shear span, the beam becomes equal in strength in normal and inclined sections, the effect of overhangs, as a rule, becomes the same in both the strength of normal and the strength of inclined sections, which is not taken into account in the regulatory documents of Russia, the USA and a number of other countries. At the same time, experiments have shown that the smaller the rib width in the cross section of bent reinforced concrete T-profile beams (standard beams of bridge structures on the territory of Russia), the greater the effect of the overhangs of compressed flanges on their bearing capacity along inclined sections. The values of the influences on the bearing capacity of bent reinforced concrete elements of such factors as: the forces of engagement of the rough surface of the banks when they are displaced in an inclined crack from the action of the load; the nagel effect in the longitudinal steel reinforcement at the intersection of it with an inclined crack; prestressing in longitudinal steel reinforcement, depending on the amount of transverse steel reinforcement and the width of the cross-section of the elements, etc. The technology for conducting experimental researches will have a positive effect for the development of a reliable theory for calculating bent reinforced concrete elements along inclined sections only when it includes the whole complex of a variety of the influence of the main factors on the operation of the researched elements with its in-depth analysis.


Author(s):  
Olena Yefimenko

In the article presents an engineering method for calculating compressed flexible reinforced concrete elements with sheet reinforcement over a steel cross section. The results of the calculation are compared with the experimental data. Calculation ofload-bearing capacity of reinforced concrete flexible elements with sheet reinforcement is based on the method of boundarystates. The work of specimens under load and the nature of the load-bearing capacity depending on the height and eccentricity of the effort were investigated. The proposed method of calculating compressed elements with sheet reinforcement on asteel-cross-section allows to take into account their flexibility in both axial and out-of-center application of load.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-21 ◽  
Author(s):  
D. B. FERREIRA ◽  
R. B. GOMES ◽  
A. L. CARVALHO ◽  
G. N. GUIMARÃES

This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column) e PR (reference column). The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.


2015 ◽  
Vol 8 (2) ◽  
pp. 88-99
Author(s):  
M. G. Marques ◽  
A. P. A. R. Liserre ◽  
R. B. Gomes ◽  
G. N. Guimarães

Strengthening of reinforced concrete columns by jacketing is one of the most common structural rehabilitation techniques in Brazil. For adequate performance, it is necessary, among others, to avoid detachment of the new concrete layer (strengthening material) from the old concrete substrate when the strengthened member is again in service conditions. This paper describes the test results of eight reinforced concrete rectangular columns subjected to combined compression and one-axis bending to evaluate the efficiency of using sleeve wedge bolts across the new concrete/old concrete interface to avoid detachment. The strengthening technique, in this case, consists of adding a layer of self-compacting concrete to one face of the column. Two columns tested were monolithic and named PO (original column) e PR (reference column). The other six columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and its results gave information about column behavior without the use of strengthening. Column PR had a 155mm by 250 mm rectangular cross section and its cross section dimensions matched the strengthened columns but it was cast monolithically. To improve bond conditions between the existing concrete and the new concrete, the concrete surface was roughened and the outermost aggregate was exposed using hydro jetting. Holes along the concrete surface were made to insert the wedge bolts responsible for increasing the bond between the two concrete surfaces. The difference among the six strengthened columns was the position and amount of bolts used. Results indicate that the position and amount of the bolts alters significantly the strength capacity of the columns, since premature rupture by concrete detachment was delayed.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1594
Author(s):  
Umut Hasgul

In this study, the response quantities affecting the equivalent yield curvature, which is important in the deformation-based seismic design and assessment of structural systems, are investigated for reinforced concrete columns with a square cross-section. In this context, the equivalent yield curvatures were determined by conducting moment–curvature analyses on various column models, in which the axial load level, cross-section dimension, longitudinal reinforcement ratio, and concrete compression strength were changed parametrically, and the independent and/or combined effects of the relevant parameters were discussed. Depending on the axial load levels of P/Agfc′ < 0.3, P/Agfc′ = 0.3, and P/Agfc′ > 0.3 for the considered columns, the yielding of reinforcement, yielding of reinforcement and/or concrete crushing, and concrete crushing governed the yield conditions, respectively. It can be noted that the cross-section dimension and axial load level became the primary parameters. Even though the independent effects with regard to particular parameters remained at minimal levels, the combined effects of them with the axial load became important in terms of the equivalent yield curvature.


Sign in / Sign up

Export Citation Format

Share Document