Experimental confirmation of the possibility of using a hydraulic diode in the discharge line of a spur rotary pump

2020 ◽  
pp. 85-88
Author(s):  
D.V. Kondusov ◽  
A.I. Sergeev ◽  
V.B. Kondusova

The possibility of using the method of invariant moments of images as a way of comparing the geometric shape of 3D models to search from a database of previously created models is considered. The found models can be used as a prototype for the development of a new part. Keywords 3D-model, contour, contour comparisons, Hu-moments. [email protected]

2020 ◽  
pp. 56-58
Author(s):  
S.Yu. Kaygorodov

The operation of a spur rotary pump with different elements (valve, hydraulic diode, long and short pipelines) in the discharge line is investigated. Keywords hydraulic machine, spur rotary pump, hydrodiode, indicator diagram. [email protected]


2021 ◽  
pp. 8-11
Author(s):  

The development of a diagram of the components of a search system by geometric form and a class diagram of obtaining design knowledge using Hu-moments is considered. Keywords: 3D model, PLM, Hu-moments, design knowledge, component diagram. [email protected]


Author(s):  
M. Abdelaziz ◽  
M. Elsayed

<p><strong>Abstract.</strong> Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200&amp;thinsp;m<sup>2</sup> of the submerged site, which exceeds more than 13000&amp;thinsp;m<sup>2</sup>, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.</p>


Author(s):  
D. Einaudi ◽  
A. Spreafico ◽  
F. Chiabrando ◽  
C. Della Coletta

Abstract. Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair.


Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. &lt;br&gt;&lt;br&gt; For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. &lt;br&gt;&lt;br&gt; Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. &lt;br&gt;&lt;br&gt; In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


Author(s):  
Agnieszka Chmurzynska ◽  
Karolina Hejbudzka ◽  
Andrzej Dumalski

During the last years the softwares and applications that can produce 3D models using low-cost methods have become very popular. What is more, they can be successfully competitive with the classical methods. The most wellknown and applied technology used to create 3D models has been laser scanning so far. However it is still expensive because of the price of the device and software. That is why the universality and accessibility of this method is very limited. Hence, the new low cost methods of obtaining the data needed to generate 3D models appeare on the market and creating 3D models have become much easier and accessible to a wider group of people. Because of their advantages they can be competitive with the laser scanning. One of the methods uses digital photos to create 3D models. Available software allows us to create a model and object geometry. Also very popular in the gaming environment device – Kinect Sensor can be successfully used as a different method to create 3D models. This article presents basic issues of 3D modelling and application of various devices, which are commonly used in our life and they can be used to generate a 3D model as well. Their results are compared with the model derived from the laser scanning. The acquired results with graphic presentations and possible ways of applications are also presented in this paper.


Author(s):  
Raluca-Diana Petre ◽  
Titus Zaharia

Automatic classification and interpretation of objects present in 2D images is a key issue for various computer vision applications. In particular, when considering image/video, indexing, and retrieval applications, automatically labeling in a semantically pertinent manner/huge multimedia databases still remains a challenge. This paper examines the issue of still image object categorization. The objective is to associate semantic labels to the 2D objects present in natural images. The principle of the proposed approach consists of exploiting categorized 3D model repositories to identify unknown 2D objects, based on 2D/3D matching techniques. The authors use 2D/3D shape indexing methods, where 3D models are described through a set of 2D views. Experimental results, carried out on both MPEG-7 and Princeton 3D models databases, show recognition rates of up to 89.2%.


2019 ◽  
Vol 25 (9) ◽  
pp. 1536-1544
Author(s):  
Xiangzhi Wei ◽  
Xianda Li ◽  
Shanshan Wen ◽  
Yu Zheng ◽  
Yaobin Tian

Purpose For any 3D model with chambers to be fabricated in powder-bed additive manufacturing processes such as SLM and SLS, powders are trapped in the chambers of the finished model. This paper aims to design a shortest network with the least number of outlets for efficiently leaking the trapped powders. Design/methodology/approach This paper proposes a nonlinear objective with linear constraints for solving the channel design problem and a particle swarm optimization algorithm to solve the nonlinear system. Findings Structural optimization for the channel network leads to fairly short channels in the interior of the 3D models and very few outlets on the model surface, which achieves the cleaning of the powders while causing almost the least changes to the model. Originality/value This paper reveals the NP-harness of computing the shortest channel network with the least number of outlets. The proposed approach helps the design of lightweight models using the powder-bed additive manufacturing techniques.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Ding ◽  
Lei Tang ◽  
Yong-jun He

Recently, 3D model retrieval based on views has become a research hotspot. In this method, 3D models are represented as a collection of 2D projective views, which allows deep learning techniques to be used for 3D model classification and retrieval. However, current methods need improvements in both accuracy and efficiency. To solve these problems, we propose a new 3D model retrieval method, which includes index building and model retrieval. In the index building stage, 3D models in library are projected to generate a large number of views, and then representative views are selected and input into a well-learned convolutional neural network (CNN) to extract features. Next, the features are organized according to their labels to build indexes. In this stage, the views used for representing 3D models are reduced substantially on the premise of keeping enough information of 3D models. This method reduces the number of similarity matching by 87.8%. In retrieval, the 2D views of the input model are classified into a category with the CNN and voting algorithm, and then only the features of one category rather than all categories are chosen to perform similarity matching. In this way, the searching space for retrieval is reduced. In addition, the number of used views for retrieval is gradually increased. Once there is enough evidence to determine a 3D model, the retrieval process will be terminated ahead of time. The variable view matching method further reduces the number of similarity matching by 21.4%. Experiments on the rigid 3D model datasets ModelNet10 and ModelNet40 and the nonrigid 3D model dataset McGill10 show that the proposed method has achieved retrieval accuracy rates of 94%, 92%, and 100%, respectively.


Sign in / Sign up

Export Citation Format

Share Document