scholarly journals FROM ARCHIVE DOCUMENTATION TO ONLINE 3D MODEL VISUALIZATION OF NO LONGER EXISTING STRUCTURES: THE TURIN 1911 PROJECT

Author(s):  
D. Einaudi ◽  
A. Spreafico ◽  
F. Chiabrando ◽  
C. Della Coletta

Abstract. Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair.

Author(s):  
L. Zhang ◽  
F. Wang ◽  
X. Cheng ◽  
C. Li ◽  
H. Lin ◽  
...  

Abstract. 3D documentation and visualization of cultural heritage has a great significance in preserving the memories and history, and supports cultural tourism. It is of great importance to study the 3D reconstruction of cultural relics and historic sites. Preservation, visualization of valuable cultural heritage has always been a difficult challenge. With the developments of photogrammetry, terrestrial laser scanning, 3D models were able to obtained quickly and accurately. In this paper we present the survey and 3D modelling of an ancient temple, Banteay Srei, situated in Angkor, which has long been admired as a “Precious Gem” of Khmer Art for its miniature size of structures and exceptional refinement of the sculptures. The survey was performed with FARO Focus3D 330 and FARO Focus3D 120 terrestrial laser scanners, a micro unmanned aerial vehicle (UAV) (DJI Phantom 4 Pro) and a digital camera (Nikon D90). Once the acquired scans were properly merged, a 3D model was generated from the global point cloud, and plans, sections and elevations were extracted from it for restoration purposes. A short multimedia video was also created for the “Digital Banteay Srei”. In the paper we will discuss all the steps and challenges addressed to provide the 3D model of Banteay Srei Temple.


Author(s):  
F. Chiabrando ◽  
C. Della Coletta ◽  
G. Sammartano ◽  
A. Spanò ◽  
A. Spreafico

In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000&amp;thinsp;m<sup>2</sup>, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.


Author(s):  
P. Clini ◽  
L. Ruggeri ◽  
R. Angeloni ◽  
M. Sasso

Thanks to their playful and educational approach Virtual Museum systems are very effective for the communication of Cultural Heritage. Among the latest technologies Immersive Virtual Reality is probably the most appealing and potentially effective to serve this purpose; nevertheless, due to a poor user-system interaction, caused by an incomplete maturity of a specific technology for museum applications, it is still quite uncommon to find immersive installations in museums.<br> This paper explore the possibilities offered by this technology and presents a workflow that, starting from digital documentation, makes possible an interaction with archaeological finds or any other cultural heritage inside different kinds of immersive virtual reality spaces.<br> Two different cases studies are presented: the National Archaeological Museum of Marche in Ancona and the 3D reconstruction of the Roman Forum of Fanum Fortunae. Two different approaches not only conceptually but also in contents; while the Archaeological Museum is represented in the application simply using spherical panoramas to give the perception of the third dimension, the Roman Forum is a 3D model that allows visitors to move in the virtual space as in the real one.<br> In both cases, the acquisition phase of the artefacts is central; artefacts are digitized with the photogrammetric technique Structure for Motion then they are integrated inside the immersive virtual space using a PC with a HTC Vive system that allows the user to interact with the 3D models turning the manipulation of objects into a fun and exciting experience.<br> The challenge, taking advantage of the latest opportunities made available by photogrammetry and ICT, is to enrich visitors’ experience in Real Museum making possible the interaction with perishable, damaged or lost objects and the public access to inaccessible or no longer existing places promoting in this way the preservation of fragile sites.


2016 ◽  
Vol 7 (15) ◽  
pp. 28 ◽  
Author(s):  
Sotiris Logothetis ◽  
Efstratios Stylianidis

<p class="VARAbstract">The Building Information Modelling (BIM) software enables the users to communicate and design, understand appearance, performance and cost in the spatial and urban design process. Another important use of the BIM technology is the documentation and 3D reconstruction of cultural heritage monuments. The appropriate BIM software equips the users with tools to easily capture and analyse concepts and maintain the coordination of design data through documentation and 3D modelling. Many developments come up in the BIM field and software industry for design, construction-reconstruction, restoration and management of the cultural heritage 3D models, using BIM tools; mainly commercial as well as free or open source. Nevertheless, recently the growing popularity of open source has altered the landscape in software industry, as they attract many users.</p><p class="VARAbstract">This paper presents a review of some recent research on the topic. We review the recent developments focusing on the OSS that can be used at various stages of BIM process in the digital documentation of cultural heritage. The results show that there is more preference in the commercial software due to the fact that the OSS is not yet complete and covers all stages of the BIM process. However, lately we have the Edificius in architectural BIM design and “BIM Vision” as Industry Foundation Classes (IFC) model viewer that try to attract as many users as possible. These tools are free and they could well be used for the digital reconstruction of cultural heritage.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 12581
Author(s):  
Cecile Meier ◽  
Isabel Sanchez Berriel ◽  
Fernando Pérez Nava

Museums have been the main centers for the dissemination of cultural heritage throughout history. In recent years, they have been increasingly digitizing their content, so that it is now common for each museum to have free digital content available on the Web. This can be photographs of the works with detailed information or even objects created in three dimensions. It is also common to find virtual museums, which might be a representation of an existing museum that has been digitized or a museum created only in digital format. This paper describes the creation of a virtual museum of Spanish clothing from the 16th century, one that exists only in digital format, accessible from a computer or digital tablet. In order to create the museum, various documentation and drawings or pictures of the clothing of that time were studied. The costumes were then created in a specialized 3D costume-modeling program called Marvelous Designer. A 3D model of the exhibition hall was created in Blender, and finally, everything was assembled in the Unity videogame engine, where the interactive part was also added, allowing the virtual visitors to walk through the hall as if they were visiting a real museum.


Author(s):  
A. T. Mozas-Calvache ◽  
J. L. Pérez-García ◽  
J. M. Gómez-López ◽  
J. L. Martínez de Dios ◽  
A. Jiménez-Serrano

Abstract. This paper describes the methodology employed to obtain 3D models of three funerary complexes (QH31, QH32 and QH33) of the Necropolis of Qubbet el Hawa (Aswan, Egypt) and the main results obtained. These rock-cut tombs are adjacent structures defined by complex geometries such as chambers, corridors and vertical shafts. The main goal of this study was to discover the spatial relationships between them and obtain a complete 3D model. In addition, some models with realistic textures of the burial chambers were demanded in order to analyse archaeological, architectural and geological aspects. The methodology was based on the use of Terrestrial Laser Scanning and Close Range Photogrammetry. In general, both techniques were developed in parallel for each tomb. Some elements presented difficulties because of their reduced dimensions, the presence of vertical falls, some objects stored in the tombs that generated occlusions of some walls, coincidence of other workers, poor illumination conditions, etc. The results included three complete 3D models obtained without texture and some parts of interest obtained with real textures. All models were merged into a global 3D model. The information extracted from this product has helped architects and archaeologists to contrast their premises about the spatial behaviour of the tombs. The results have also allowed the obtaining of the first 3D documentation of these tombs under the same reference system, allowing them to be studied completely. This information is very important for documentation purposes but also to understand the spatial behaviour of these structures and the excavation processes developed by ancient Egyptians 4000 years ago.


Author(s):  
T. Landes ◽  
M. Heissler ◽  
M. Koehl ◽  
T. Benazzi ◽  
T. Nivola

<p><strong>Abstract.</strong> In the cultural heritage field, several specialists like archaeologists, architects, geomaticians, historians, etc. are used to work together. With the upcoming technologies allowing to capture efficiently data in the field, to digitize historical documents, to collect worldwide information related to the monuments under study, the wish to summarize all the sources of data (including the knowledge of the specialists) into one 3D model is a big challenge. In order to guarantee the reliability of the proposed reconstructed 3D model, it is of crucial importance to integrate the level of uncertainty assigned to it. From a geometric point of view, uncertainty is often defined, quantified and expressed with the help of statistical measures. However, for objects reconstructed based on archaeological assumptions, statistical measures are not appropriate. This paper focuses on the decomposition of 3D models into levels of uncertainties (LoUs) and on the best way to visualize them through two case studies: the castle of Kagenfels and the Horbourg-Wihr Castellum, both located in Alsace, France. The first one is well documented through still ongoing excavations around its remains, whereas the second one disappeared under the urbanization of the city. An approach enabling, on the 3D models, not only to quantify but also to visualize uncertainties coming from archaeological assumptions is addressed. Finally, the efficiency of the approach for qualifying the proposed 3D model of the reconstructed castle regarding its reliability is demonstrated.</p>


Author(s):  
V. Katsichti ◽  
G. Kontogianni ◽  
A. Georgopoulos

Abstract. In archaeological excavations, many small fragments or artefacts are revealed whose fine details sometimes should be captured in 3D. In general, 3D documentation methods fall into two main categories: Range-Based modelling and Image-Based modelling. In Range Based modelling, a laser scanner (Time of Flight, Structured light, etc.) is used for the raw data acquisition in order to create the 3D model of an object. The above method is accurate enough but is still very expensive in terms of equipment. On the other hand, Image-Based modelling, is affordable because the equipment required is merely a camera with the appropriate lens, and possibly a turntable and a tripod. In this case, the 3D model of an object is created by suitable processing of images which are taken around the object with a large overlap. In this paper, emphasis is given on the effectiveness of 3D models of frail archaeological finds originate from the palatial site of Ayios Vasileios in Laconia in the south-eastern Peloponnese, using low-cost equipment and methods. The 3D model is also produced using various, mainly freeware, hence low-cost, software and the results are compared to those from a well-established commercial one.


Author(s):  
M. Canciani ◽  
E. Conigliaro ◽  
M. Del Grasso ◽  
P. Papalini ◽  
M. Saccone

The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented “Augment”) it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.


Sign in / Sign up

Export Citation Format

Share Document