Effect of tool feed on mechanical properties of butt joints during friction welding with mixing of aluminum alloys

2020 ◽  
pp. 65-70
Author(s):  
A.N. Feofanov ◽  
V.V. Ovchinnikov ◽  
A.M. Gubin

Friction stir welding of butt joints of aluminum alloys is considered. It is experimentally determined, that when temperature and time parameters are violated, defects in the form of discontinuities are localized at the boundary of the weld and the base metal, due to incompatibility of deformations of the weld metal and the adjacent base material. Keywords friction welding with stirring, aluminum alloy, mode parameters, structure, defects, strength. [email protected]

Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


Author(s):  
J.C. Verduzco Huarez ◽  
R. Garcia Hernandez ◽  
G. M. Dominguez Almaraz ◽  
J.J. Villalón López

This research work focuses on the study of the improvement of mechanical properties, specifically the tensile strength of 6061-T6 aluminum alloy on prismatic specimens with 9.5 mm thickness that has been subjected to friction stir welding process and two heat treatments; solubilized and aging before or after the welding process. Three cases studied and evaluated were, welding of the base material without heat treatment (BMW), solubilized heat treatment and partial aging of the base material before welding (HTBW), and heat treatment of solubilized and aging of the base material after welding (HTAW). The obtained results show an increase of about 10% (20 MPa) of tensile strength for the HTBW process, compared to BMW case. In addition, for the case of HTAW, the obtained tensile resistance presents a joint efficiency of 96%, which is close to the tensile strength of the base material (»310 MPa).


2016 ◽  
Vol 710 ◽  
pp. 41-46 ◽  
Author(s):  
Aline F.S. Bugarin ◽  
Fernanda Martins Queiroz ◽  
Maysa Terada ◽  
Hercílio G. De Melo ◽  
Isolda Costa

2XXX and 7XXX high strength aluminum alloys are the most used materials for structural parts of aircrafts due to their high strength/weight ratio. Their joining procedure is an engineering challenge since they present low weldability. Friction Stir Welding (FSW) is a joining technology developed in the early 90 ́s. It is a solid-state welding process, without the use of fillers or gas shield, that eliminates conventional welding defects and has been considered of great interest for application in the aircraft industry. FSW of aluminum alloys results in four regions of different microstructures, specifically: the base material (BM), the heat affected zone (HAZ), the thermo-mechanically affected zone (TMAZ), and the nugget zone (NZ). The complex microstructure of the weld region leads to higher susceptibility to localized corrosion as compared to the BM even when similar alloys are joined. The welding of dissimilar alloys in its turn results in even more complex microstructures as materials with intrinsically different composition, microstructures and electrochemical properties are put in close contact. Despite the great interest in FSW, up to now, only few corrosion studies have been carried out for characterization of the corrosion resistance of dissimilar Al alloys welded by FSW. The aim of this study is to investigate the corrosion behavior of aluminum alloy 2024-T3 (AA2024-T3) welded to aluminum alloy 7475-T761 (AA7475-T761) by FSW. The evaluation was performed in 0.01 mol.L-1 by means of open circuit potential measurements, polarization techniques and surface observation after corrosion tests.


2017 ◽  
Vol 7 (3) ◽  
pp. 1619-1622
Author(s):  
J. A. Al-jarrah ◽  
A. Ibrahim ◽  
S. Sawlaha

This paper investigates the effect of axial force on the surface appearance and mechanical properties of 6061 aluminum alloy welded joints prepared by friction stir welding. The applied pressure varies from 1.44 to 10.07 MPa. The applied pressure was calculated from the axial force which exerted by a spring loaded cell designed for this purpose. Defect free joints obtained at an applied pressure of 3.62 MPa. The mechanical properties of the welded joints were evaluated through microhardness and tensile tests at room temperature. From this investigation, it was found that the joint produced with an applied pressure of 5.76 MPa exhibits superior tensile strength compared to other welded joints. The fracture of this joint happened at the base material.


2007 ◽  
Vol 561-565 ◽  
pp. 1059-1062 ◽  
Author(s):  
H. Takahara ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Y. Okawa ◽  
Kenji Higashi

The influence of tool control in non-linear friction stir welding (FSW) on mechanical properties of joints was investigated. FSW is widely applied to linear joints. It is impossible for five axis FSW machines, however, to keep all the FSW parameters in optimum conditions at non-linear welding. Non-linear FSW joints should be made by compromise with the order of priority for FSW parameters. The tensile test results of butt joints with rectangular change in welding direction on plate plane (L-shaped butt joints) with various welding parameter change. It was found that turn to the retreating side is encouraged when welding direction change. And the method of zero inclination tool angle is effective at non-linear and plane welding.


Sign in / Sign up

Export Citation Format

Share Document