scholarly journals Nerve Transfers for an Upper Brachial Plexus Injury: A Case Report

2014 ◽  
Vol 3 (01) ◽  
pp. 15-24
Author(s):  
Ferry Senjaya

Objective: To demonstrate multiple nerve transfers as primary surgical management for an upperplexus injury.Methods: A 6-year-old boy who suffered a preganglionic upper brachial plexus injury following a motor vehicle accident, exhibited complete biceps, deltoids, suprapinatus, and infraspinatus palsies.Multiple nerve transfers, which consist of spinal accessory nerves to suprascapular nerve transfer, median and ulnar motor fascicles to biceps and brachialis motor branches transfers, and long head oftriceps motor branch to axillary nerve transfer were performed 6 months after injury.Results: 13 months post multiple nerve transfer, the patient has regained M4+/5 elbow flexion, M4/5 external rotation, and M4/5 shoulder abduction.Conclusion: Nerve transfer is a viable option for upper plexus palsy management. With a sound surgical technique and good case selection, the results can be very rewarding. This case showedquite robust re-innervation with significant functional recovery at a one-year follow-up following multiple nerve transfers.Keywords: Brachial Plexus Injury, Upper Plexus Injury, Nerve Root Avulsion, Nerve Transfers, Functional Recovery.

2020 ◽  
Vol 27 (07) ◽  
pp. 1442-1447
Author(s):  
Husnain Khan ◽  
Muhammad Shafique ◽  
Zahid Iqbal Bhatti ◽  
Tehseen Ahmad Cheema

Adult brachial plexus injury is a now a common problem due to high incidence of motorbike accidents. Among all types, C 5 and C6 (upper brachial plexus injury) is the most common. If the patient present within 6 months then nerve transfer is the preferred treatment. However, there are different options for nerve transfer and different approaches for surgery. Objectives: The objective of the study was to share our experience of nerve transfer close to target muscles in upper brachial plexus injury. Study Design: Quaisi experimental study. Setting: National Orthopaedic Hospital, Bahawalpur. Period: January 2015 to June 2018. Material & Methods: Total 32 patients were operated with isolated C5 and C6 injury. In all patients four nerve transfers were done. For shoulder abduction posterior approach was used and accessory to suprascapular nerve and one of motor branch of radial to axillary nerve were transferred. Modified Oberlin transfer was done for elbow flexion. Both shoulder abduction and elbow flexion was graded according to medical research council grading system. Results: After one year follow up more than 75% of the patients showed good to normal shoulder abduction and 87.50% showed good to normal elbow flexion. Residual Median nerve damage was noted only in two patients (6.25%). Conclusion: If there is no evidence of recovery up to three months early nerve transfer should be considered, ideal time is 3-6 months. Nerve transfer close to target muscle yields superior results. The shoulder stabilizers and abductors should ideally be innervated by double nerve transfer through posterior approach. Similarly double fascicular transfer (modified Oberlin) should be done for elbow flexion.


2020 ◽  
Vol 19 (2) ◽  
pp. E131-E139 ◽  
Author(s):  
Thibault Lafosse ◽  
Thibault Gerosa ◽  
Julien Serane ◽  
Michael Bouyer ◽  
Emmanuel H Masmejean ◽  
...  

Abstract BACKGROUND Restoration of shoulder external rotation remains challenging in patients with C5/C6 brachial plexus injuries (BPI). OBJECTIVE To describe a double-nerve transfer to the axillary nerve (AN), targeting both its anterior and posterior motor branches, through an axillary route. METHODS A total of 10 fresh-frozen cadaveric brachial plexuses were dissected. Using an axillary approach, the infraclavicular brachial plexus terminal branches were exposed, including the axillary, ulnar, and radial nerves. Under microscopic magnification, the triceps long head motor branch (TLHMB), anteromedial fascicles of the ulnar nerve (UF), the anterior motor branch of the axillary nerve (AAMB), and the teres minor motor branch (TMMB) were dissected and transected to simulate 2 nerve transfers, THLMB-AAMB and UF-TMMB. Several anatomical criteria were assessed, including the overlaps between fascicles when placed side-by-side. Six patients with C5/C6 BPI were then operated on using this technique. RESULTS TLHMB-AAMB and UF-TMMB transfers could be simulated in all specimens, with mean overlaps of 37.1 mm and 6.5 mm, respectively. After a mean follow-up of 23 mo, all patients had recovered grade-3 strength or more in the deltoid and teres minor muscles. Mean active shoulder flexion, abduction, and external rotation with the arm 90° abducted were of 128°, 117°, and 51°, respectively. No postoperative motor deficit was found in the UF territory. CONCLUSION A double-nerve transfer, based on radial and ulnar fascicles, appears to be an adequate option to reanimate both motor branches of the AN, providing satisfactory shoulder active elevations and external rotation in C5/C6 BPI patients.


2020 ◽  
Vol 25 (03) ◽  
pp. 307-314
Author(s):  
Gavrielle Hui-Ying Kang ◽  
Rebecca Qian-Ru Lim ◽  
Fok-Chuan Yong

Background: The neural surgical options for reconstruction of elbow flexion in brachial plexus injuries depend on the availability of nerve donors. In upper-type avulsion injuries, the ulnar or median nerves, when intact, are reliable intra-plexal donor nerves for transfers to the biceps muscle. In complete avulsion injuries, donors are limited to extra-plexal sources, such as intercostal nerves (ICNs). Methods: We reviewed our results of ICN and partial distal nerve (ulnar or median) transfers for elbow flexion reconstruction in patients with brachial plexus avulsion injuries. The time taken for recovery of elbow flexion strength to M3 and the final motor outcome at 2 years were compared between both groups. Results: 38 patients were included in this study. 27 had ICN transfers to the musculocutaneous nerve (MCN), 8 had partial ulnar nerve transfers and 3 had partial median nerve transfers to the MCN's biceps motor branch. The mean time interval from injury to surgery was 3.6 months. Recovery of elbow flexion was observed earlier in the distal nerve transfer group (p < 0.05). Overall, success rates were higher in patients with distal nerve transfers (100%), compared to ICN transfers (63%) at 2 years (p = 0.018). Patients with distal nerve transfers achieved a higher final median strength of M4.0 [Interquartile range (IQR) 3.5–4.5], compared to M3.5 (IQR 2.0–4.0) in the ICN group (p = 0.031). In the subgroup of patients with upper-type brachial plexus injuries, there were no significant differences in motor outcomes between the ICN versus distal nerve transfers group. Conclusions: In our entire cohort, patients with distal nerve transfers had faster motor recovery and better elbow flexion power than patients with ICN transfers. In patients with partial brachial plexus injuries, outcomes of ICN transfers were not inferior to distal nerve transfers.


2008 ◽  
Vol 05 (02) ◽  
pp. 95-104 ◽  
Author(s):  
PS Bhandari ◽  
LP Sadhotra ◽  
P Bhargava ◽  
AS Bath ◽  
MK Mukherjee ◽  
...  

AbstractIn irreparable C5, C6 spinal nerve and upper truncal injuries the proximal root stumps are not available for grafting, hence repair is based on nerve transfer or neurotization. Between Feb 2004 and May 2006, 23 patients with irreparable C5, C6 or upper truncal injuries of the Brachial Plexus underwent multiple nerve transfers to restore the shoulder and elbow functions. Most of them (16 patients) sustained injury following motor cycle accidents. The average denervation period was 5.3 months. Shoulder function was restored by transfer of distal part of spinal accessory nerve to suprascapular nerve, and transfer of radial nerve branch to long head of triceps to the anterior branch of axillary nerve. Elbow function was restored by transfers of ulnar and median nerve fascicles to the biceps and brachialis motor branches of musculocutaneous nerve. All patients recovered shoulder abduction and external rotation; 7 scored M4 and 16 scored M3. Range of abduction averaged 1230(range, 800-1700). Full elbow flexion was restored in all 23 patients; 15 scored M4 and 8 scored M3. Patients with excellent results could lift 5 kgs of weight. Selective nerve transfers close to the target muscle provide an early and good return of functions. There is negligible morbidity in donor nerves. These intraplexal transfers are suitable in all cases of upper brachial plexus injuries.


2017 ◽  
Vol 42 (3) ◽  
pp. E11 ◽  
Author(s):  
Arvin R. Wali ◽  
Charlie C. Park ◽  
Justin M. Brown ◽  
Ross Mandeville

OBJECTIVE Peripheral nerve transfers to regain elbow flexion via the ulnar nerve (Oberlin nerve transfer) and median nerves are surgical options that benefit patients. Prior studies have assessed the comparative effectiveness of ulnar and median nerve transfers for upper trunk brachial plexus injury, yet no study has examined the cost-effectiveness of this surgery to improve quality-adjusted life years (QALYs). The authors present a cost-effectiveness model of the Oberlin nerve transfer and median nerve transfer to restore elbow flexion in the adult population with upper brachial plexus injury. METHODS Using a Markov model, the authors simulated ulnar and median nerve transfers and conservative measures in terms of neurological recovery and improvements in quality of life (QOL) for patients with upper brachial plexus injury. Transition probabilities were collected from previous studies that assessed the surgical efficacy of ulnar and median nerve transfers, complication rates associated with comparable surgical interventions, and the natural history of conservative measures. Incremental cost-effectiveness ratios (ICERs), defined as cost in dollars per QALY, were calculated. Incremental cost-effectiveness ratios less than $50,000/QALY were considered cost-effective. One-way and 2-way sensitivity analyses were used to assess parameter uncertainty. Probabilistic sampling was used to assess ranges of outcomes across 100,000 trials. RESULTS The authors' base-case model demonstrated that ulnar and median nerve transfers, with an estimated cost of $5066.19, improved effectiveness by 0.79 QALY over a lifetime compared with conservative management. Without modeling the indirect cost due to loss of income over lifetime associated with elbow function loss, surgical treatment had an ICER of $6453.41/QALY gained. Factoring in the loss of income as indirect cost, surgical treatment had an ICER of −$96,755.42/QALY gained, demonstrating an overall lifetime cost savings due to increased probability of returning to work. One-way sensitivity analysis demonstrated that the model was most sensitive to assumptions about cost of surgery, probability of good surgical outcome, and spontaneous recovery of neurological function with conservative treatment. Two-way sensitivity analysis demonstrated that surgical intervention was cost-effective with an ICER of $18,828.06/QALY even with the authors' most conservative parameters with surgical costs at $50,000 and probability of success of 50% when considering the potential income recovered through returning to work. Probabilistic sampling demonstrated that surgical intervention was cost-effective in 76% of cases at a willingness-to-pay threshold of $50,000/QALY gained. CONCLUSIONS The authors' model demonstrates that ulnar and median nerve transfers for upper brachial plexus injury improves QALY in a cost-effective manner.


2021 ◽  
Vol 27 (1) ◽  
pp. 87-92
Author(s):  
Brandon W. Smith ◽  
Kate W. C. Chang ◽  
Sravanthi Koduri ◽  
Lynda J. S. Yang

OBJECTIVEThe decision-making in neonatal brachial plexus palsy (NBPP) treatment continues to have many areas in need of clarification. Graft repair was the gold standard until the introduction of nerve transfer strategies. Currently, there is conflicting evidence regarding outcomes in patients with nerve grafts versus nerve transfers in relation to shoulder function. The objective of this study was to further define the outcomes for reconstruction strategies in NBPP with a specific focus on the shoulder.METHODSA cohort of patients with NBPP and surgical repairs from a single center were reviewed. Demographic and standard clinical data, including imaging and electrodiagnostics, were gathered from a clinical database. Clinical data from physical therapy evaluations, including active and passive range of motion, were examined. Statistical analysis was performed on the available data.RESULTSForty-five patients met the inclusion criteria for this study, 19 with graft repair and 26 with nerve transfers. There were no significant differences in demographics between the two groups. Understandably, there were no patients in the nerve grafting group with preganglionic lesions, resulting in a difference in lesion type between the cohorts. There were no differences in preoperative shoulder function between the cohorts. Both groups reached statistically significant improvements in shoulder flexion and shoulder abduction. The nerve transfer group experienced a significant improvement in shoulder external rotation, from −78° to −28° (p = 0.0001), whereas a significant difference was not reached in the graft group. When compared between groups, there appeared to be a trend favoring nerve transfer in shoulder external rotation, with the graft patients improving by 17° and the transfer patients improving by 49° (p = 0.07).CONCLUSIONSIn NBPP, patients with shoulder weakness experience statistically significant improvements in shoulder flexion and abduction after graft repair or nerve transfer, and patients with nerve transfers additionally experience significant improvement in external rotation. With regard to shoulder external rotation, there appear to be some data supporting the use of nerve transfers.


2004 ◽  
Vol 101 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

Object. The goal of this study was to evaluate outcomes in patients with brachial plexus avulsion injuries who underwent contralateral motor rootlet and ipsilateral nerve transfers to reconstruct shoulder abduction/external rotation and elbow flexion. Methods. Within 6 months after the injury, 24 patients with a mean age of 21 years underwent surgery in which the contralateral C-7 motor rootlet was transferred to the suprascapular nerve by using sural nerve grafts. The biceps motor branch or the musculocutaneous nerve was repaired either by an ulnar nerve fascicular transfer or by transfer of the 11th cranial nerve or the phrenic nerve. The mean recovery in abduction was 90° and 92° in external rotation. In cases of total palsy, only two patients recovered external rotation and in those cases mean external rotation was 70°. Elbow flexion was achieved in all cases. In cases of ulnar nerve transfer, the muscle scores were M5 in one patient, M4 in six patients, and M3+ in five patients. Elbow flexion repair involving the use of the 11th cranial nerve resulted in a score of M3+ in five patients and M4 in two patients. After surgery involving the phrenic nerve, two patients received a score of M3+ and two a score of M4. Results were clearly better in patients with partial lesions and in those who were shorter than 170 cm (p < 0.01). The length of the graft used in motor rootlet transfers affected only the recovery of external rotation. There was no permanent injury at the donor sites. Conclusions. Motor rootlet transfer represents a reliable and potent neurotizer that allows the reconstruction of abduction and external rotation in partial injuries.


Hand ◽  
2021 ◽  
pp. 155894472110306
Author(s):  
Kevin J. Nickel ◽  
Alexander Morzycki ◽  
Ralph Hsiao ◽  
Michael J. Morhart ◽  
Jaret L. Olson

Background Restoration of shoulder function in obstetrical brachial plexus injury is paramount. There remains debate as to the optimal method of upper trunk reconstruction. The purpose of this study was to test the hypothesis that spinal accessory nerve to suprascapular nerve transfer leads to improved shoulder external rotation relative to sural nerve grafting. Methods A systematic review of Medline, EMBASE, EBSCO CINAHL, SCOPUS, Cochrane Library, and TRIP Pro from inception was conducted. Our primary outcome was shoulder external rotation. Results Four studies were included. Nerve transfer was associated with greater shoulder external rotation relative to nerve grafting (mean difference: 0.82 AMS 95% confidence interval [CI]: 0.27-1.36, P < .005). Patients undergoing nerve grafting were more likely to undergo a secondary shoulder stabilizing procedure (odds ratio [OR]: 1.27, 95% CI: 0.8376-1.9268). Conclusion In obstetrical brachial plexus injury, nerve transfer is associated with improved shoulder external rotation and a lower rate of secondary shoulder surgery. Level of Evidence Level III; Therapeutic


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


Sign in / Sign up

Export Citation Format

Share Document