scholarly journals Development of Yellow Mosaic Virus Resistant Genotypes in Urdbean TNAU blackgram VBN 6: A high yielding blackgram variety with resistant to Mungbean Yellow Mosaic Virus

2019 ◽  
pp. 180-186
Author(s):  
Pandiyan M ◽  
Senthil N ◽  
Manivannan N ◽  
Karthikeyan A ◽  
Sivakumar C ◽  
...  

The Blackgram culture VBG04-014 is a cross derivative of Vamban 1 x Vigna mungo var. silvestris 1 released as variety TNAU Blackgram VBN(Bg)6, it is maturing in 65-70 days and suited for cultivation under both rainfed and irrigated conditions. It has an average yield potential of 871 Kg per hectare. This culture is resistant to Yellow Mosaic Virus, Leaf Curl Virus and less damage of pod borer. It possesses desirable characters like high protein content (21.1%). Grains are medium sized with black in colour. It is recommended for cultivation in Tamil Nadu. Keywords: VBG04-014; Blackgram; Yellow Mosaic Virus; Rainfed; Irrigated

2019 ◽  
pp. 187-193
Author(s):  
Pandiyan M ◽  
Senthil N ◽  
Krishnaveni A ◽  
Sivakumar C ◽  
Singh BB ◽  
...  

The Blackgram culture VBG04-008 is a cross derivative of blackgram Vamban 3 x Vigna mungo var. silvestris 8 is released as TNAU blackgram VBN (Bg) 7 maturing in 65-70 days with an average height of 17 cm and suited for cultivation under both under rainfed and irrigated conditions. It has a yield potential of 981 Kg per hectare. This culture is resistant to Yellow Mosaic Virus, Powdery mildew and Leaf Curl Virus and less damage of pod borer. It possesses desirable characters like high protein content (21.05%), crude fibre (5.90g/100g) and iron (3.76 mg/100g). Grains are medium sized with black in colour. It is recommended for cultivation in Tamil Nadu, Andhra Pradesh, Karnataka and Orissa. Keywords: VBG04-008; Blackgram; VBN 7 Mung Bean Yellow Mosaic Virus; Powdery mildew-Rainfed; Irrigated


2019 ◽  
pp. 19-22
Author(s):  
Pandiyan M ◽  
Senthil N ◽  
Sivakumar C ◽  
Krishnaveni A ◽  
Vaithiyalingan M

The green gram culture VGG04-001 is developed from a cross derivative of K 1 x Vellore local released as VBN (Gg)3 maturing in 65-70 days and suited for cultivation under both under rainfed and irrigated conditions. It has a yield potential of 826 Kg per hectare. It is multiblooming type with moderately resistance to Yellow Mosaic Virus and Powdery Mildew. It possesses desirable characters like high protein content (24.16%). It is recommended for cultivation in Tamil Nadu except Nilgiris and Kanyakumari districts of Tamil Nadu. Keywords: VGG04-001; Green gram; Yellow Mosaic Virus; Powdery Mildew; Rainfed; Irrigated


Author(s):  
K. Kamesh Krishnamoorthy ◽  
V. G. Malathi ◽  
P. Renukadevi ◽  
S. Mohan Kumar ◽  
M. Raveendran ◽  
...  

The yellow mosaic disease of blackgram caused by Mungbean yellow mosaic virus has emerged as a serious threat to pulses production especially in the South Eastern Asia.  Seed borne nature of MYMV in blackgram seeds was determined using the seeds harvested from a MYMV resistant (either VBN-6 or VBN-8) and susceptible blackgram (CO-5) varieties grown in three different agroclimatic zones of Tamil Nadu in India for three consecutive cropping seasons namely, Rabi 2018 (October- December), Summer 2019 (March-May) and Kharif 2019 (June- August) at three different time intervals viz., 20, 40 and 60 days after sowing (DAS). Seed borne nature of MYMV was observed only in the susceptible variety CO-5 and was absent in the   resistant varieties. Transmission of MYMV from infected plant to seeds was observed in all the three parts of the seeds viz., seed coat, cotyledon and embryo. Seeds from infected plants also showed abnormalities like shrinking, discolouration, ill filling inside pods and misshapen appearance.


Author(s):  
B. Madhumitha ◽  
K. Eraivan Arutkani Aiyanathan ◽  
M. Raveendran ◽  
M. Sudha

Background: Mung bean Yellow Mosaic Virus (MYMV) is found to be one of the prime viral diseases of mungbean in Tamil Nadu state. Screening for MYMV resistance in field condition always remains a hassle for breeding society. The peculiar MYMV symptoms often failed in the field due to some factors such as environmental changes, whitefly genotypes, host factors etc. With the above perspective, the present study aimed to screen the mung bean derivatives against MYMV through a novel in vitro agroinoculation technique and further substantiation through whitefly transmission.Methods: Four interspecific derivatives (VGGRU 1, VGGRU 2, VGGRU 3 and VGGRU 4) generated by making crosses between mungbean VRM (Gg) 1 and rice bean (TNAU RED) along with the susceptible check VRM (Gg) 1 were agroinoculated with the MYMV infectious clone VA 239 (KA30 DNA A + KA27 DNA) and are further substantiated through whitefly transmission studies from the artificially reared whiteflies. Result: The agroinoculation results revealed that among the four interspecific derivatives, VGGRU 1 was found to be completely resistant to MYMV. The substantiation of the obtained result through whitefly transmission also revealed that 24 h Acquisition Access Period (AAP) and 24 h Inoculation Access Period (IAP) with Bemisia tabaci able to cause 65% infectivity in susceptible plant VRM (Gg) 1 and zero infectivity in VGGRU 1 and the results were PCR confirmed for the presence of viral DNA.


Author(s):  

Abstract A new distribution map is provided for Mungbean yellow mosaic virus. Geminiviridae: Begomovirus. Hosts: mungbean (Vigna radiata), blackgram (V. mungo). Information is given on the geographical distribution in Asia (Bangladesh, India, Andhra Pradesh, Assam, Bihar, Delhi, Gujarat, Haryana, Himachal Pradesh, Karnataka, Madhya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh, West Bengal, Myanmar, Pakistan, Philippines, Sri Lanka, Thailand, Vietnam), Oceania (Papua New Guinea).


2020 ◽  
Vol 18 (3) ◽  
pp. 196-199
Author(s):  
G. Basanagouda ◽  
S. Ramesh ◽  
N. Nagaraju ◽  
Nagaraj ◽  
A.S. Padmaja

AbstractMungbean yellow mosaic virus (MYMV) disease is one of the most devastating biotic constraints of mungbean production in India. Dependable knowledge on the number and mode of action of genes controlling resistance to MYMV disease is one of the keys to develop resistant cultivars. The F1s of four crosses derived from four MYMV resistant genotypes × one highly susceptible genotype, their parents, F2s and F3s along with a susceptible check were screened for responses to MYMV disease following the infector-row technique under natural infection conditions. A good fit of F2 population segregation to the hypothesized ratio of 15 susceptible:1 resistant and that of F3 population segregation to the expected ratio of 55 susceptible:9 resistant at 55 days after planting confirmed the involvement of two recessive genes in imparting resistance to MYMV disease.


Author(s):  
K.S. Win ◽  
S. Win ◽  
T.M. Htun ◽  
N.K.K. Win ◽  
K.S. Oo

Background: Mungbean Yellow Mosaic Virus is one of the major constraints in mungbean production. Knowledge of mode of inheritance and gene effects of MYMV resistance is very useful and effective for the development of genotypes resistant to disease or incorporation of resistance into the desirable promising genotypes whichlack of disease resistance. Methods: In order to estimate inheritance pattern of MYMV disease resistance in mungbean, the study was conducted in summer season (2019) under natural condition. Six generations such as Pl, P2, Fl, BC1, BC2 and F2 of six combinations [two resistant genotypes (7639 and 10266) and three susceptible genotypes (7621, 10257 and R-021018)] were studied inheritance pattern of resistance to MYMV in segregation population. Result: Based on the result from mode of inheritance pattern of MYMV resistance, it can be concluded that single recessive gene is controlled the resistance of MYMV and susceptible behavior indicated as dominant over resistant. Additive gene action was the major role for the selection of MYMV resistance. Some differences in the expression of gene contributing for MYMV resistance from others findings might be attributed due to the sources of resistant genotypes which have different nature of resistant gene used in this investigation. 


Author(s):  
K. Vadivel ◽  
N. Manivannan ◽  
A. Mahalingam ◽  
V.K. Satya ◽  
C. Vanniarajan ◽  
...  

Background: Blackgram [Vigna mungo (L.) Hepper] is an important food legume crop of India. Mungbean yellow mosaic virus (MYMV) disease is the major problem in blackgram. The disease can reduce seed yield upto 100% or even kill a plant infected at an early vegetative stage. The most effective way to prevent the occurrence of this disease is to develop genetically resistant cultivars of blackgram. However, a major difficulty in breeding MYMV disease resistant in blackgram is field screening for the virus disease. Hence identification of QTL followed by Marker-assisted selection (MAS) is highly useful for genetic improvement of crops. With this background, a study was made for identification as well as validation of quantitative trait loci (QTL) for MYMV disease resistance in blackgram.Methods: A total of 112 F2:3 lines were evaluated for MYMV disease resistance along with parents viz., MDU 1 (MYMV disease susceptible) and Mash 1008 (MYMV disease resistant) at the National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, Tamil Nadu during July-September 2018 under Augmented Design in the field. Each line was sown in one row of 3 m in length with a spacing of 30 cm as between row and 10 cm as within row. Susceptible genotypes CO 5 and MDU 1 were sown as disease spreader rows after every eight rows and also around the plots. The MYMV disease score was recorded on 60 DAS, by using phenotype rating scale from 1 (resistant) to 9 (highly susceptible), as suggested by Singh et al. (1995). The mean of each progeny was calculated and used as phenotypic data. A total of 525 SSR primers were used to test polymorphism between parents MDU 1 and Mash 1008. Genotyping was carried out for 112 F2:3 RILs of the cross MDU 1 x Mash 1008 with 35 polymorphic SSR markers. Linkage and QTL analyses were performed using QTL IciMapping (version 4.1.0.0) (Wang et al. 2016) and QGene 4.4.0 (Joehanes and Nelson 2008) respectively. Two mapping populations MDU 1 x Mash 114 and CO 5 x VBN 6 in F2:3 and F2 generations respectively were used in this study to validate the identified QTL regions.Result: QTL study indicated the presence of two major QTLs for MYMV disease score in LG 2 and LG 10 at 60 DAS with 20.90 and 24.90% of phenotypic variation respectively. Validation of these QTLs in two other mapping population indicated that QTL on LG 10 was validated with high phenotypic variation of 45.40-46.00%. Hence it may conclude that qmymv10_60 may be utilized for MAS/MABC with assured improvement on MYMV disease resistance in blackgram.


Author(s):  
K. Vadivel ◽  
N. Manivannan ◽  
A. Mahalingam ◽  
V.K. Satya ◽  
S. Ragul

Background: Mungbean yellow mosaic virus (MYMV) disease is the most destructive disease in blackgram. Development of MYMV resistant varieties is one of the best possible solutions to avoid the yield reduction in blackgram. There are conflicting reports on the genetics of resistance to MYMV disease claiming that it is controlled by both dominant and recessive genes. Hence the present study was aimed to understand the inheritance pattern of the MYMV disease resistance in eight crosses of blackgram.Methods: Parents, F1 and F2 generation of eight cross combinations were raised during July - Sep, 2018 at National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, Tamil Nadu. An infector row of CO 5 was raised to intensify the MYMV disease pressure after every eight rows. Based on disease incidence on 60th day after sowing, two phenotypic classes were formed among F2 plants with the scales of (1 to 3) as resistant phenotype and (4 to 9) as susceptible phenotype. The goodness of fit to Mendelian segregation ratio for MYMV disease resistance in the segregating population was tested by Chi square test (Stansfield, 1991).Result: The MYMV disease incidence was tri-genically controlled with inhibitory gene action in four crosses viz., MDU 1 x Mash 114, CO5 x Mash 114, MDU 1 x VBN 6 and CO 5 x VBN 6. Complementary gene action with two genes was observed in four crosses viz., MDU 1 x Mash 1008, CO 5 x Mash 1008, MDU 1 x VBN 8 and CO 5 x VBN 8. Differences in number of genes were observed due to the presence of recessive inhibitory gene in both male and female parents of the crosses which had complementary gene action for MYMV disease. The putative gene symbols assigned for the six genotypes viz., S1S1S2S2ii (MDU 1 and CO 5), s1s1s2s2II (Mash 114 and VBN 6) and s1s1s2s2ii (Mash 1008 and VBN 8), respectively. 


Sign in / Sign up

Export Citation Format

Share Document