Identification and Confirmation of Resistance in Mungbean [Vigna radiata (L.) Wilczek] Derivatives to Mungbean Yellow Mosaic Virus (MYMV)

Author(s):  
B. Madhumitha ◽  
K. Eraivan Arutkani Aiyanathan ◽  
M. Raveendran ◽  
M. Sudha

Background: Mung bean Yellow Mosaic Virus (MYMV) is found to be one of the prime viral diseases of mungbean in Tamil Nadu state. Screening for MYMV resistance in field condition always remains a hassle for breeding society. The peculiar MYMV symptoms often failed in the field due to some factors such as environmental changes, whitefly genotypes, host factors etc. With the above perspective, the present study aimed to screen the mung bean derivatives against MYMV through a novel in vitro agroinoculation technique and further substantiation through whitefly transmission.Methods: Four interspecific derivatives (VGGRU 1, VGGRU 2, VGGRU 3 and VGGRU 4) generated by making crosses between mungbean VRM (Gg) 1 and rice bean (TNAU RED) along with the susceptible check VRM (Gg) 1 were agroinoculated with the MYMV infectious clone VA 239 (KA30 DNA A + KA27 DNA) and are further substantiated through whitefly transmission studies from the artificially reared whiteflies. Result: The agroinoculation results revealed that among the four interspecific derivatives, VGGRU 1 was found to be completely resistant to MYMV. The substantiation of the obtained result through whitefly transmission also revealed that 24 h Acquisition Access Period (AAP) and 24 h Inoculation Access Period (IAP) with Bemisia tabaci able to cause 65% infectivity in susceptible plant VRM (Gg) 1 and zero infectivity in VGGRU 1 and the results were PCR confirmed for the presence of viral DNA.

2019 ◽  
pp. 187-193
Author(s):  
Pandiyan M ◽  
Senthil N ◽  
Krishnaveni A ◽  
Sivakumar C ◽  
Singh BB ◽  
...  

The Blackgram culture VBG04-008 is a cross derivative of blackgram Vamban 3 x Vigna mungo var. silvestris 8 is released as TNAU blackgram VBN (Bg) 7 maturing in 65-70 days with an average height of 17 cm and suited for cultivation under both under rainfed and irrigated conditions. It has a yield potential of 981 Kg per hectare. This culture is resistant to Yellow Mosaic Virus, Powdery mildew and Leaf Curl Virus and less damage of pod borer. It possesses desirable characters like high protein content (21.05%), crude fibre (5.90g/100g) and iron (3.76 mg/100g). Grains are medium sized with black in colour. It is recommended for cultivation in Tamil Nadu, Andhra Pradesh, Karnataka and Orissa. Keywords: VBG04-008; Blackgram; VBN 7 Mung Bean Yellow Mosaic Virus; Powdery mildew-Rainfed; Irrigated


2019 ◽  
pp. 180-186
Author(s):  
Pandiyan M ◽  
Senthil N ◽  
Manivannan N ◽  
Karthikeyan A ◽  
Sivakumar C ◽  
...  

The Blackgram culture VBG04-014 is a cross derivative of Vamban 1 x Vigna mungo var. silvestris 1 released as variety TNAU Blackgram VBN(Bg)6, it is maturing in 65-70 days and suited for cultivation under both rainfed and irrigated conditions. It has an average yield potential of 871 Kg per hectare. This culture is resistant to Yellow Mosaic Virus, Leaf Curl Virus and less damage of pod borer. It possesses desirable characters like high protein content (21.1%). Grains are medium sized with black in colour. It is recommended for cultivation in Tamil Nadu. Keywords: VBG04-014; Blackgram; Yellow Mosaic Virus; Rainfed; Irrigated


Author(s):  
K. Kamesh Krishnamoorthy ◽  
V. G. Malathi ◽  
P. Renukadevi ◽  
S. Mohan Kumar ◽  
M. Raveendran ◽  
...  

The yellow mosaic disease of blackgram caused by Mungbean yellow mosaic virus has emerged as a serious threat to pulses production especially in the South Eastern Asia.  Seed borne nature of MYMV in blackgram seeds was determined using the seeds harvested from a MYMV resistant (either VBN-6 or VBN-8) and susceptible blackgram (CO-5) varieties grown in three different agroclimatic zones of Tamil Nadu in India for three consecutive cropping seasons namely, Rabi 2018 (October- December), Summer 2019 (March-May) and Kharif 2019 (June- August) at three different time intervals viz., 20, 40 and 60 days after sowing (DAS). Seed borne nature of MYMV was observed only in the susceptible variety CO-5 and was absent in the   resistant varieties. Transmission of MYMV from infected plant to seeds was observed in all the three parts of the seeds viz., seed coat, cotyledon and embryo. Seeds from infected plants also showed abnormalities like shrinking, discolouration, ill filling inside pods and misshapen appearance.


2021 ◽  
Vol 18 (3) ◽  
pp. 467-478
Author(s):  
Ashwini Talakayala ◽  
Veerapaneni Bindu Prathyusha ◽  
Dhanasekar Divya ◽  
Srinivas Ankanagari ◽  
Mallikarjuna Garladinne

Mungbean yellow mosaic virus (MYMV) causes massive crop losses in green gram. MYMV is a member of begomovirus with bipartite genome comprising DNA-A and DNA-B components, which is transmitted by whiteflies. Cloning and preparation of infectious clone is very much essential for screening germplasm or transgenic material of pulse crops since viruliferous whiteflies may not be available throughout the year. In the current work, we have amplified rolling circle mediated viral genome of MYMV using Φ29 DNA polymerase. The amplified products was digested and cloned into the plant expression vector pCAMBIA2301.The cloned constructs was then transformed into Agrobacterium LBA4404 through freeze thaw method. Further, three viral transmission techniques including mechanical rubbing, Agroinfiltration and Agroinoculation, were employed for assessing the mosaic symptoms in green gram. The molecular confirmation through polymerase chain reaction (PCR) indicated that the yellow mosaic symptoms were formed due to infectivity of MYMV in the green gram.


Author(s):  

Abstract A new distribution map is provided for Mungbean yellow mosaic virus. Geminiviridae: Begomovirus. Hosts: mungbean (Vigna radiata), blackgram (V. mungo). Information is given on the geographical distribution in Asia (Bangladesh, India, Andhra Pradesh, Assam, Bihar, Delhi, Gujarat, Haryana, Himachal Pradesh, Karnataka, Madhya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh, West Bengal, Myanmar, Pakistan, Philippines, Sri Lanka, Thailand, Vietnam), Oceania (Papua New Guinea).


Author(s):  
K. Vadivel ◽  
N. Manivannan ◽  
A. Mahalingam ◽  
V.K. Satya ◽  
C. Vanniarajan ◽  
...  

Background: Blackgram [Vigna mungo (L.) Hepper] is an important food legume crop of India. Mungbean yellow mosaic virus (MYMV) disease is the major problem in blackgram. The disease can reduce seed yield upto 100% or even kill a plant infected at an early vegetative stage. The most effective way to prevent the occurrence of this disease is to develop genetically resistant cultivars of blackgram. However, a major difficulty in breeding MYMV disease resistant in blackgram is field screening for the virus disease. Hence identification of QTL followed by Marker-assisted selection (MAS) is highly useful for genetic improvement of crops. With this background, a study was made for identification as well as validation of quantitative trait loci (QTL) for MYMV disease resistance in blackgram.Methods: A total of 112 F2:3 lines were evaluated for MYMV disease resistance along with parents viz., MDU 1 (MYMV disease susceptible) and Mash 1008 (MYMV disease resistant) at the National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, Tamil Nadu during July-September 2018 under Augmented Design in the field. Each line was sown in one row of 3 m in length with a spacing of 30 cm as between row and 10 cm as within row. Susceptible genotypes CO 5 and MDU 1 were sown as disease spreader rows after every eight rows and also around the plots. The MYMV disease score was recorded on 60 DAS, by using phenotype rating scale from 1 (resistant) to 9 (highly susceptible), as suggested by Singh et al. (1995). The mean of each progeny was calculated and used as phenotypic data. A total of 525 SSR primers were used to test polymorphism between parents MDU 1 and Mash 1008. Genotyping was carried out for 112 F2:3 RILs of the cross MDU 1 x Mash 1008 with 35 polymorphic SSR markers. Linkage and QTL analyses were performed using QTL IciMapping (version 4.1.0.0) (Wang et al. 2016) and QGene 4.4.0 (Joehanes and Nelson 2008) respectively. Two mapping populations MDU 1 x Mash 114 and CO 5 x VBN 6 in F2:3 and F2 generations respectively were used in this study to validate the identified QTL regions.Result: QTL study indicated the presence of two major QTLs for MYMV disease score in LG 2 and LG 10 at 60 DAS with 20.90 and 24.90% of phenotypic variation respectively. Validation of these QTLs in two other mapping population indicated that QTL on LG 10 was validated with high phenotypic variation of 45.40-46.00%. Hence it may conclude that qmymv10_60 may be utilized for MAS/MABC with assured improvement on MYMV disease resistance in blackgram.


Author(s):  
K. Vadivel ◽  
N. Manivannan ◽  
A. Mahalingam ◽  
V.K. Satya ◽  
S. Ragul

Background: Mungbean yellow mosaic virus (MYMV) disease is the most destructive disease in blackgram. Development of MYMV resistant varieties is one of the best possible solutions to avoid the yield reduction in blackgram. There are conflicting reports on the genetics of resistance to MYMV disease claiming that it is controlled by both dominant and recessive genes. Hence the present study was aimed to understand the inheritance pattern of the MYMV disease resistance in eight crosses of blackgram.Methods: Parents, F1 and F2 generation of eight cross combinations were raised during July - Sep, 2018 at National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, Tamil Nadu. An infector row of CO 5 was raised to intensify the MYMV disease pressure after every eight rows. Based on disease incidence on 60th day after sowing, two phenotypic classes were formed among F2 plants with the scales of (1 to 3) as resistant phenotype and (4 to 9) as susceptible phenotype. The goodness of fit to Mendelian segregation ratio for MYMV disease resistance in the segregating population was tested by Chi square test (Stansfield, 1991).Result: The MYMV disease incidence was tri-genically controlled with inhibitory gene action in four crosses viz., MDU 1 x Mash 114, CO5 x Mash 114, MDU 1 x VBN 6 and CO 5 x VBN 6. Complementary gene action with two genes was observed in four crosses viz., MDU 1 x Mash 1008, CO 5 x Mash 1008, MDU 1 x VBN 8 and CO 5 x VBN 8. Differences in number of genes were observed due to the presence of recessive inhibitory gene in both male and female parents of the crosses which had complementary gene action for MYMV disease. The putative gene symbols assigned for the six genotypes viz., S1S1S2S2ii (MDU 1 and CO 5), s1s1s2s2II (Mash 114 and VBN 6) and s1s1s2s2ii (Mash 1008 and VBN 8), respectively. 


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Aditya Pratap ◽  
Rakesh Pandey ◽  
Shalini Purwar ◽  
...  

Yellow mosaic disease (YMD) affects several types of leguminous crops, including the Vigna species, which comprises a number of commercially important pulse crops. YMD is characterized by the formation of a bright yellow mosaic pattern on the leaves; in severe forms, this pattern can also be seen on stems and pods. This disease leads to tremendous yield losses, even up to 100%, in addition to deterioration in seed quality. Symptoms of this disease are similar among affected plants; YMD is not limited to mungbean (Vigna radiata L. Wilczek) and also affects other collateral and alternate hosts. In the last decade, rapid advancements in molecular detection techniques have been made, leading to an improved understanding of YMD-causing viruses. Three distinct bipartite begomoviruses, namely, Mungbean Yellow Mosaic India Virus (MYMIV), Mungbean Yellow Mosaic Virus (MYMV), and Horsegram Yellow Mosaic Virus (HgYMV), are known to cause YMD in Vigna spp. Vigna crops serve as an excellent protein source for vegetarians worldwide; moreover, they aid in improving soil health by fixing atmospheric nitrogen through a symbiotic association with Rhizobium bacteria. The loss in the yield of these short-duration crops due to YMD, thus, needs to be checked. This review highlights the discoveries that have been made regarding various aspects of YMD affecting mungbean, including the determination of YMD-causing viruses and strategies used to develop high-yielding YMD-resistant mungbean varieties that harness the potential of related Vigna species through the use of different omics approaches.


2004 ◽  
Vol 78 (21) ◽  
pp. 11890-11903 ◽  
Author(s):  
Basavaraj Bagewadi ◽  
Shoajiang Chen ◽  
Sunil K. Lal ◽  
Nirupam Roy Choudhury ◽  
Sunil K. Mukherjee

ABSTRACT Proliferative cell nuclear antigen (PCNA), a conserved plant protein as well as an important replication factor, is induced in response to geminivirus infection in the resting cells of the phloem tissues. The biochemical role of PCNA in rolling circle replication (RCR) of geminivirus DNA has not been explored in detail. The initiation of RCR of the bipartite genome of a geminivirus, Indian mung bean yellow mosaic virus (IMYMV), is mainly controlled by viral protein Rep (or AL1 or AC1). The role of host PCNA in RCR of IMYMV was revealed by studying the physical and functional interactions between recombinant PCNA and recombinant IMYMV Rep. Pea nuclear PCNA as well as recombinant pea PCNA showed binding to recombinant Rep in experiments involving both affinity chromatography and yeast two-hybrid approaches. The contacting amino acid residues of PCNA seemed to be present throughout a wide region of the trimeric protein, while those of Rep appeared to be localized only in the middle part of the protein. The site-specific nicking-closing activity and the ATPase function of IMYMV Rep were impaired by PCNA. These observations lead to interesting speculations about the control of viral RCR and dynamic profiles of protein-protein interactions at the RCR origin of the geminiviruses.


Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


Sign in / Sign up

Export Citation Format

Share Document