scholarly journals An overview on use of desiccant dehumidifiers in modern air-conditioning

2019 ◽  
pp. 16-31
Author(s):  
Jani DB

The solid desiccant based dehumidifier used in conjunction with the conventional HVAC combines the dehumidification of solid desiccant system and with the cooling capacity of the conventional air conditioning system. This hybrid cooling system provides thermal comfort to the occupants of the conditioned space. The hybrid systems main appeal lies in the fact that, it consumes much lesser high grade electrical energy as compared to the dedicated standalone traditional air conditioning systems. The electrical energy usage is possible still lower by use of primary energy sources for to supply the thermal energy needed for the desiccant regeneration. For this purpose freely available renewable solar energy or industrial waste heat can also be used for the regeneration heat source. Sometimes it is also possible to provide condenser waste heat for the part of desiccant reactivation heat supply may increase the overall performance of the system. It was also found that this cooling system with use of air to air waste heat recovery wheel performed better than without it in terms of dehumidification as well as cooling performance. The present study report important literature survey on the dehumidification potentials of desiccant integrated hybrid cooling system operating in hot and humid climates. Keywords: Hybrid air-conditioning; Rotary desiccant dehumidifier; Heat recovery wheel; Regeneration heat; Renewable solar energy; Waste heat

2014 ◽  
Vol 953-954 ◽  
pp. 692-697
Author(s):  
Xiao Feng Ren ◽  
Shu Xing Zhao ◽  
Zhi Chao Wang ◽  
Yi Tao Zhou ◽  
Ying Jie Zhang

Based on the simulation of the air conditioning construction dynamic load and simulation calculation of air-source gas engine-driven heat pump (GEHP), the air-source GEHP air conditioning in winter, summer and the annual primary energy ratio are analyzed in simulation with the combination of a hotel building in Tianjin. Firstly, DeST software is used to simulate all-year hourly air conditioning load of the building. Then air-source GEHP simulation model [1] is used to calculate the annual hourly gas consumption and the amount of GEHP's gas consumption in winter, summer and a total year afterwards can be got. At the same time, by the analysis of waste heat recovery of gas engine-driven, primary energy ratio for air-source GEHP in Tianjin is given under the different waste heat recovery of winter, summer and the annual.


2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


2020 ◽  
Vol 168 ◽  
pp. 00046
Author(s):  
Georgii Karman ◽  
Yurii Oksen ◽  
Olena Trofymova ◽  
Yurii Komissarov ◽  
Borys Dizhevskyi ◽  
...  

A possibility of gas engine waste heat conversion into cold for air conditioning in mines using lithium bromide absorption chillers is investigated. Dependencies of parameters of a thermodynamic cycle and energy indicators of chillers on temperatures of a heating medium and a coolant are obtained using mathematical modelling. It is shown that it is rational to use two chillers with sequential movement of a heating medium and a coolant through them in opposite directions for a full conversion of gas engine waste heat. COP of such a system is 0.733. This allows obtaining 2140 kW of cooling capacity with a coolant temperature of 7 °C when using a gas engine JMS-620 by Jenbacher.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4691
Author(s):  
Jia Yu ◽  
Qingshan Zhu ◽  
Li Kong ◽  
Haoqing Wang ◽  
Hongji Zhu

This paper focuses on the problem of thermoelectric cooler waste heat recovery and utilization, and proposes taking the waste heat together with the original heat source as the input heat source of the integrated thermoelectric generation–cooling system. By establishing an analytic model of this integrated thermoelectric generation–cooling system, the steady-state and transient thermal effects of this system are analyzed. The steady-state analysis results show that the thermoelectric generator’s actual heat source is about 20% larger than the intrinsic heat source. The transient analysis results prove that the current of thermoelectric power generation and the cold end temperature of the system show a nonlinear change rate with time. The cold end temperature of the system has a maximum value. Under different intrinsic heat sources, this maximum value can be reached between 1 s and 2.5 s.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1265 ◽  
Author(s):  
Gequn Shu ◽  
Chen Hu ◽  
Hua Tian ◽  
Xiaoya Li ◽  
Zhigang Yu ◽  
...  

About 2/3 of the combustion energy of internal combustion engine (ICE) is lost through the exhaust and cooling systems during its operation. Besides, automobile accessories like the air conditioning system and the radiator fan will bring additional power consumption. To improve the ICE efficiency, this paper designs some coupled thermal management systems with different structures which include the air conditioning subsystem, the waste heat recovery subsystem, engine and coolant subsystem. CO2 is chosen as the working fluid for both the air conditioning subsystem and the waste heat recovery subsystem. After conducting experimental studies and a performance analysis for the subsystems, the coupled thermal management system is evaluated at different environmental temperatures and engine working conditions to choose the best structure. The optimal pump speed increases with the increase of environmental temperature and the decrease of engine load. The optimal coolant utilization rate decreases with the increase of engine load and environmental temperature, and the value is between 38% and 52%. While considering the effect of environmental temperature and road conditions of real driving and the energy consumption of all accessories of the thermal management system, the optimal thermal management system provides a net power of 4.2 kW, improving the ICE fuel economy by 1.2%.


Author(s):  
Carlo M. Bartolini ◽  
Danilo Salvi

The steam generated through the use of waste heat recovered from a steam injection gas turbine generally exceeds the maximum mass of steam which can be injected into steam injection gas turbine. The ratio between the steam and air flowing into the engine is not more than 10–15%, as an increase in the pressure ratio can cause the compressor to stall. Naturally, the surplus steam can be utilized for a variety of alternative applications. During the warmer months, the ambient temperature increases and results in reduced thermal efficiency and electrical capacity. An inlet air cooling system for the compressor on a steam injection gas turbine would increase the rating and efficiency of power plants which use this type of equipment. In order to improve the performance of steam injection gas turbines, the authors investigated the option of cooling the intake air to the compressor by harnessing the thermal energy not used to produce the maximum quantity of steam that can be injected into the engine. This alternative use of waste energy makes it possible to reach maximum efficiency in terms of waste recovery. This study examined absorption refrigeration technology, which is one of the various systems adopted to increase efficiency and power rating. The system itself consists of a steam injection gas turbine and a heat recovery and absorption unit, while a computer model was utilized to evaluate the off design performance of the system. The input data required for the model were the following: an operating point, the turbine and compressor curves, the heat recovery and chiller specifications. The performance of an Allison 501 KH steam injection gas plant was analyzed by taking into consideration representative ambient temperature and humidity ranges, the optimal location of the chiller in light of all the factors involved, and which of three possible air cooling systems was the most economically suitable. In order to verify the technical feasibility of the hypothetical model, an economic study was performed on the costs for upgrading the existing steam injection gas cogeneration unit. The results indicate that the estimated pay back period for the project would be four years. In light of these findings, there are clear technical advantages to using gas turbine cogeneration with absorption air cooling in terms of investment.


Sign in / Sign up

Export Citation Format

Share Document