scholarly journals Solar Assisted Power Generation System in Hot Desert Climate: A Cost-Benefit Perspective

Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.

2021 ◽  
Vol 10 (3) ◽  
pp. 125-139
Author(s):  
Mochammad Donny Anggoro ◽  
Diana Siregar ◽  
Regina Ninggar ◽  
Satriyo Wicaksono ◽  
Soo Hee Lee

The solar PV systems are semiconductor devices that precisely convert sunlight into electricity, through the transfer of electrons. They provide several advantages, such as high modularity, zero noise, and adequate availability of solar resources in Indonesia. Therefore, this study aims to determine the potency, policy perspective, and Cost-Benefit Analysis (CBA) of the solar energy implementation for electricity generation. A statistical analysis was used for measuring potency, as well as reviewing opportunistic policies and barriers. A review of some CBA-based journals was also carried out, to determine that the development of solar power electricity had more benefit than fossil fuels and LCOE (Levelized Cost Of Electricity). The results of the 10-days average value calculation in 2019 were 388-563 W/m2, with the maximum values at 1137-1604 W/m2. Meanwhile the analysis of the maximum hourly averages for Western, Central, and Eastern Indonesia were 570-719, 634-758, and 559-627 W/m2 at 11.00-12.00 WIB, 11.00-13.00 WITA, and 12.00-13.00 WIT, respectively. The potency of solar radiation intensity in Indonesia was averagely 150-750 W/m2, as the highest values were found in East Nusa Tenggara, Maluku, and Merauke.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 708 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhen-yu Zhao ◽  
Munir Ahmad ◽  
Abdul Rehman

Fossil fuels are the primary sources of electricity generation in Pakistan. The energy demand and supply gap have intensified recently due to the massive population and fossil fuels are unable to meet the gigantic energy requirement of the country. Meanwhile, they also have adverse environmental impacts. Remote rural regions that are far away from the national grid do not have any means to fulfill their energy needs. The off-grid solar photovoltaic (PV) system has emerged to be the best energy option to electrify these remote regions. However, the strategic problem pertaining to local electricity generation is the absence of the area-specific generation capacity and economic feasibility data for solar energy. To address this problem, this study aims to assess the potential and economic viability of utilizing an off-grid solar PV system for rural electrification in the Punjab province of Pakistan. The research results reveal that there is an excellent solar irradiance in the rural areas of Punjab for electricity generation. In addition, suitable tilt angles have been calculated to increase the energy output of solar PV in the respective regions. Furthermore, this study has undertaken the economic viability for solar PV systems, and it was found that electricity generation from the solar PV costs Pakistani rupees (PKR) 7.15 per kWh and is much cheaper than conventional electricity, which costs PKR 20.7 per kWh. Besides, the system can reduce carbon emissions considerably. If 100% of the unelectrified households adopt solar PV system, then 617,020 metric tons of CO2 could be mitigated annually. Based on research findings, this study has suggested essential policy recommendations that would serve as a guideline for the government and stakeholders to maximum deploy the off-grid solar PV rural electrification programs in Punjab as well as on a national scale.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 308 ◽  
Author(s):  
Li Xu ◽  
Ying Wang ◽  
Yasir Solangi ◽  
Hashim Zameer ◽  
Syed Shah

The off-grid solar photovoltaic (PV) system is a significant step towards electrification in the remote rural regions, and it is the most convenient and easy to install technology. However, the strategic problem is in identifying the potential of solar energy and the economic viability in particular regions. This study, therefore, addresses this problem by evaluating the solar energy potential and economic viability for the remote rural regions of the Sindh province, Pakistan. The results recommended that the rural regions of Sindh have suitable solar irradiance to generate electricity. An appropriate tilt angle has been computed for the selected rural regions, which significantly enhances the generation capacity of solar energy. Moreover, economic viability has been undertaken in this study and it was revealed that the off-grid solar PV power generation system provides electricity at the cost of Pakistani Rupees (PKR) 6.87/kWh and is regarded as much cheaper than conventional energy sources, i.e., around PKR 20.79/kWh. Besides, the off-grid solar PV power generation system could mitigate maximum CO2 annually on the condition that all of the selected remote rural regions adopt the off-grid solar PV system. Therefore, this study shall help the government to utilize the off-grid solar PV power generation system in the remote rural regions of Pakistan.


2020 ◽  
Vol 152 ◽  
pp. 02009
Author(s):  
Motlatsi Lehloka ◽  
James Swart ◽  
Pierre Hertzog

Due to global climate change as a result of pollution caused by the burning of fossil fuels, the world has changed its view when it comes to power generation. The focus is now more on natural and clean energy, such as solar PV systems. An effective solar PV system is not a simple system, as the sun is not a stationery object. The sun moves from east to west daily and that makes the design and installation of an effective solar PV system challenging for optimal power harvesting. The purpose of this paper is to compare two algorithms (linear regression and fuzzy logic) that are applied to a dual-axis tracker in order to maximize the output power yield that may be obtained from a fixed-axis system. One fixed-axis PV module serves as the baseline for comparing the results of the dual-axis trackers that are controlled by the two algorithms. A key recommendation is to align a PV module perpendicular to the sun from sunrise to sunset using a control algorithm based on fuzzy logic principles in order to extract the maximum amount of available energy.


2021 ◽  
Vol 13 (17) ◽  
pp. 9516
Author(s):  
Razzaqul Ahshan

Hydrogen production using renewable power is becoming an essential pillar for future sustainable energy sector development worldwide. The Sultanate of Oman is presently integrating renewable power generations with a large share of solar photovoltaic (PV) systems. The possibility of using the solar potential of the Sultanate can increase energy security and contribute to the development of the sustainable energy sector not only for the country but also for the international community. This study presents the hydrogen production potential using solar resources available in the Sultanate. About 15 locations throughout the Sultanate are considered to assess the hydrogen production opportunity using a solar PV system. A rank of merit order of the locations for producing hydrogen is identified. It reveals that Thumrait and Marmul are the most suitable locations, whereas Sur is the least qualified. This study also assesses the economic feasibility of hydrogen production, which shows that the levelized cost of hydrogen (LCOH) in the most suitable site, Thumrait, is 6.31 USD/kg. The LCOH in the least convenient location, Sur, is 7.32 USD/kg. Finally, a sensitivity analysis is performed to reveal the most significant influential factor affecting the future’s green hydrogen production cost. The findings indicate that green hydrogen production using solar power in the Sultanate is promising, and the LCOH is consistent with other studies worldwide.


Author(s):  
Kenneth K. Lee

This study presents the results of an initial assessment of the technical and economic feasibility of a 5 megawatts (MW) net Solar Electric Photovoltaic (PV) power plant on the Island of Kauai, Hawaii. It analyzes three potential PV based designs of the solar power plant — single-axis tracking flat plate, fixed flat plate, and two-axis tracking concentrating photovoltaics (CPV) based on the solar insolation on Kauai. Greenhouse gas (GHG) avoided, energy production projection, capital costs, operation & maintenance (O&M) costs, and the levelized cost of energy (LCOE) of each PV design is developed for comparison. Regardless of the PV technology, the following factors may position solar PV power plant as a competitive alternative to conventional fossil-powered power plant: • Recent technology advances have occurred in concentrating solar collectors increasing overall efficiency; • Use of renewable energy can lead to reduced greenhouse gas (GHG) emissions; • Fossil fuels (e.g. natural gas and oil) retail prices are near record highs, increasing electricity rates. The assessment results show that single-axis tracking flat plate PV system are best suited for sites in Kauai as they accommodate the intermittent cloud cover of the region while following the sun from dawn until dusk as it crosses the sky.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2252 ◽  
Author(s):  
Moath Alsafasfeh ◽  
Ikhlas Abdel-Qader ◽  
Bradley Bazuin ◽  
Qais Alsafasfeh ◽  
Wencong Su

One of the most important sources of clean energy in the future is expected to be solar energy which is considered a real time source. Research efforts to optimize solar energy utilization are mainly concentrated on the components of solar energy systems. Photovoltaic (PV) modules are considered the main components of solar energy systems and PVs’ operations typically occur without any supervisory mechanisms, which means many external and/or internal obstacles can occur and hinder a system’s efficiency. To avoid these problems, the paper presents a system to address and detect the faults in a PV system by providing a safer and more time efficient inspection system in real time. In this paper, we proposing a real time inspection and fault detection system for PV modules. The system has two cameras, a thermal and a Charge-Coupled Device CCD. They are mounted on a drone and they used to capture the scene of the PV modules simultaneously while the drone is flying over the solar garden. A mobile PV system has been constructed primarily to validate our real time proposed system and for the proposed method in the Digital Image and Signal Processing Laboratory (DISPLAY) at Western Michigan University (WMU). Defects have been detected accurately in the PV modules using the proposed real time system. As a result, the proposed drone mounted system is capable of analyzing thermal and CCD videos in order to detect different faults in PV systems, and give location information in terms of panel location by longitude and latitude.


Author(s):  
Bharosh Kumar Yadav ◽  
Pankaj Kumar Rauniyar ◽  
K Sudhakar ◽  
Tri Ratna Bajracharya ◽  
S Shanmuga Priya

ABSTRACT In today’s world, where global warming is one of the greatest human challenges, sustainable energy generation is becoming increasingly relevant. The use of green and clean energy sources is the best way to minimize CO2, CO, NOX and other emissions of conventional energy usage. Solar photovoltaic (PV) systems are more beneficial and an exciting application to set up an eco-friendly green educational campus. In this regard, the potential sites within Tribhuvan University, Institute of Engineering, Purwanchal Campus, Dharan city, Nepal are analysed for grid-tied solar PV power plant installation to meet the 100% energy demand of the campus using energy, economic and environment-friendly analysis. The daily, monthly and annual load and solar irradiance data of past years of the campus have been analysed to estimate the solar PV plant’s capacity and system performance using PVSYST V7.0 software analysis tools .The simulation results show that 110 kWp of solar PV power plant will be sufficient for the entire campus to qualify for the first fully green-powered campus in Nepal, which corresponds to fulfill 66.4 MWh/year daytime energy demand out of total 161 MWh/year energy consumption of the campus with a capacity to generate a total of 181.5 MWh/year energy from the designed solar PV system. The result also shows that 115.1 MWh/year of surplus energy produced from the PV power plant can be injected into the utility grid to yield considerable savings in utility cost. On the basis of these results, campus authorities and stakeholders may commit to investing and implementing of this project to ensure that the campus is completely green.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3368-3373

The limited fossil fuels and demand for the energy made renewable a booming source of generating energy. An enormous amount of solar energy made it a best alternative renewable energy, which is free of cost and unlimited source of energy, eco-friendly and sustainable to the environment. But during the execution of panels on land has the burden of intense land requirements which is a premium commodity. The hurdles faced are land availability, land acquisition, land development and, land evacuation. Earth is covered with 70% of water. So, most of the solar energy is captured by water compared to land. To conserve the valuable land and water, installing a solar PV system on water bodies like oceans, lakes, lagoons, reservoirs, canals and water storage tanks are an appropriate option. They have numerous advantages compared to land installed solar panels. They reduce the valuable land area, reduce evaporation of drinking water, cooling of solar panels by the water below the panels. Additionally, the aquatic environmental profits by the solar installation limit the algae growth and potentially improves water quality. In this paper a new method of the float was discussed, a comparison is made between the floating PV system and standalone PV system. This method also improves the efficiency of the solar panel. A Small prototype has been designed and the results were plotted for different loads.


2020 ◽  
pp. 66-79
Author(s):  
Zahabia Gandhi ◽  
Hao Liu

Sweden aims to achieve near-zero non-renewable energy use in all the newly constructed buildings from 2020. One of the most promising methods of achieving these energy goals and reducing the net energy-use is using solar photovoltaic (PV) systems in buildings. Although some studies have demonstrated this method, the solar PV industry is growing rapidly. Therefore, the study aimed at using sources with the latest information to analyse the true potential of PV systems for the current initial cost of the PV system and tax benefits in Sweden. The study investigates the economic feasibility of a grid-connected solar PV system from a technical and economic perspective for a group of public buildings in Sweden. The hourly energy production and cost of purchasing deficit electricity was simulated for various tilts and ground coverage area to find the optimum tilt and ground coverage ratio of PV panels. The PV energy supply of four different systems – 26 kWp, 75 kWp, 80 kWp, 155 kWp – in different locations was simulated. The overproduction, own usage rate, solar fraction, investment cost, profit over its lifespan and the payback period of each system were compared for the existing as well as improved energy use. Honeybee 0.0.64 and SAM 2018.11.11 was used to simulate energy use and PV production. Results indicate that a system with a high own usage rate and specific yield was profitable when the selling price of electricity (excluding tax refund) was lower. However, a system with a higher production potential became more profitable when the selling price of electricity (including tax refund) was equal or higher than the purchasing price. Additionally, a sensitivity analysis was conducted to demonstrate the feasibility of the system if the price of electricity or interest rates changed in the future. The outcome of this research demonstrates the techno-economic feasibility of implementing a solar PV system in Sweden and provides a set of benchmarks for comparison of such systems around the world.


Sign in / Sign up

Export Citation Format

Share Document