scholarly journals Experimental Investigation and Statistical Analysis of Low Frequency RFID System

Author(s):  
Shilpa Choudhary ◽  
◽  
Abhishek Sharma ◽  
Arpana Mishra ◽  
◽  
...  

In today’s era RFID system plays a key role in the field of asset tracking but its maximum read range or detectability may get degraded due to the challenges which are being provided by varying atmospheric conditions. So, to study the effect of these challenging atmospheric conditions, experimental investigation and statistical analysis of RFID system detectability has been carried out. Varying surrounding temperature, humidity and the presence of soil layer thickness in between RFID reader and tag and its five different grain sizes were considered as input parameters. All these observations were carried out for three different soils i.e. sandy soil, Silt and clay. Execution of test was carried out according to the MINITAB 17 tool. According to ANOVA analysis as well as from interaction plot it was found that soil layer thickness have more impact on RFID system read range and R2 value was found to be 96.91%, 99.64% and 99.78% for RRSS, RRS and RRC respectively. Composite desirability of optimization was found to be 0.8425. Optimum values of process parameters Temperature, Soil Layer Thickness, Relative Humidity and Soil Grain Size were found to be 303.3°K, 2.5 cm, 40.1 %, 1.92 mm respectively. Best values of responses were found to be 10.94 cm for (Read Range in presence of Clay); 11.02 cm (Read Range in presence of Silt) and 10.97 cm (Read Range in presence of Sandy Soil).

Evergreen ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 396-403
Author(s):  
Shilpa Choudhary ◽  
Abhishek Sharma ◽  
Kashish Srivastava ◽  
Hemant Purohit ◽  
Mudita Vats

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


Author(s):  
Christoph Steinhausen ◽  
Grazia Lamanna ◽  
Bernhard Weigand ◽  
Rolf Stierle ◽  
Joachim Groß ◽  
...  

The disintegration process of liquid fuel within combustion chambers is one of the most important parameters forefficient and stable combustion. Especially for high pressures exceeding the critical value of the injected fluids the mixing processes are not fully understood yet. Recently, different theoretical macroscopic models have been introduced to understand breakdown of the classical two phase regime and predict the transition from evaporation to a diffuse-mixing process. In order to gain deeper insight into the physical processes of this transition, a parametric study of free-falling n-pentane droplets in an inert nitrogen atmosphere is presented. Atmospheric conditions varied systematically from sub- to supercritical values with respect to the fluid properties. An overlay of a diffuse lighted image with a shadowgram directly in the optical setup (front lighted shadowgraphy) was applied to simultaneously detect the presence of a material surface of the droplet as well as changes in density gradients in the surrounding atmosphere. The experimental investigation illustrates, that the presence of a material surface cannot be shown by a direct shadowgram. However, reflections and refractions caused by diffuse ambient illumination are able to indicate the presence of a material surface. In case of the supercritical droplet injections in this study, front lighted shadowgraphy clearly revealed the presence of a material surface, even when the pre-heated droplets are released into a supercritical atmosphere. This detection of the droplet interface indicates, that the droplet remains subcritical in the region of interest, even though it is injected into a supercritical atmosphere. Based on the adiabatic mixing assumption recent Raman-scattering results in the wake of the droplet are re-evaluated to compute the temperature distribution. Presented experimental findings as well as the re-evaluation of recent Raman scattering results are compared to thermodynamic models to predict the onset of diffuse-mixing and supercritical disintegration of the droplet. Additionally, a one dimensional evaporation model is used to evaluate the validity of the adiabatic mixing assumption in the estimation of the droplet temperature. The presented findings contribute to the understanding of recent theoretical models for prediction of spray and droplet disintegration and the onset of diffuse-mixing processes.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4635


2021 ◽  
Vol 33 (10) ◽  
pp. 103611
Author(s):  
Ida K. Kure ◽  
Hugo A. Jakobsen ◽  
Nicolas La Forgia ◽  
Jannike Solsvik

Sign in / Sign up

Export Citation Format

Share Document