scholarly journals Design of High Secured Multi Scroll Attractor Based Henon Map Chaotic Encryption Scheme for VANET Communication

Author(s):  
G Bindu ◽  
◽  
Dr. R .A Karthika ◽  

The vehicular ad hoc networks are vulnerable to security threats while communication is established in wireless made proper encryption scheme can aid in establishing effective and secure communication. Conventionally group key agreement model (GKA) scheme is widely used for enabling security in VANET networks which is insignificant because of their over exploitation of resources in the network. In order to establish a secure communication in VANETs, a novel multi scroll attractor (MSA)based chaotic Henon maps encryption approach is proposed. The extensive experimentations has been carried out in the proposed scheme and it proves to satisfy all the security requirements of VANET scenario.

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Akshay Kumar MV ◽  
Amogh C ◽  
Bhuvan S Kashyap ◽  
Drupad N Maharaj ◽  
Shazia Sultana

India accounts for the highest road accidents and traffic congestion globally. The necessity for a canny vehicle framework is of great importance. VANET, abbreviated as Vehicular ad hoc networks is a network created in an ad hoc manner where different vehicles can exchange useful information among each other with dedicated servers ensuring safe travel. Security in VANET has always been a challenge in implementing a real time intelligent transport system. VANET is a type of mobile ad-hoc, to give correspondences among close by vehicles and among vehicles and close by fixed hardware. Vehicular ad hoc networks are highly dynamic in nature and suffer from frequent path breakage due to the high velocity of the moving vehicle. Hence, there are many security challenges and different types of attacks that makes VANETs less secure. Therefore, providing secure dedicated short-range communication (DSRC) easefully with any loss of data or malicious nodes has been a major research area. The major concern being addressed in the paper is to provide secure communication and save lives in road accidents. The role of security is high and messages in DSRC send warning messages to other vehicles. If attackers change these messages, then accidents become a part of the network and users’ lives can be at risk. Different classes of attacks include monitoring attack, social attack, timing attack, application attack and network attack to name a few. Advanced encryption standard is a symmetric block encryption algorithm. There is no evidence to crack this algorithm till date. This paper will provide a detailed overview of VANET architecture, types of attacks on VANET, AES algorithm and its salient features and how this algorithm could be utilized to make intelligent transport systems secure.


Author(s):  
Amira Kchaou ◽  
Ryma Abassi ◽  
Sihem Guemara El Fatmi

Vehicular ad-hoc networks (VANETs) allow communication among vehicles using some fixed equipment on roads called roads side units. Vehicular communications are used for sharing different kinds of information between vehicles and RSUs in order to improve road safety and provide travelers comfort using exchanged messages. However, falsified or modified messages can be transmitted that affect the performance of the whole network and cause bad situations in roads. To mitigate this problem, trust management can be used in VANET and can be distributive for ensuring safe and secure communication between vehicles. Trust is a security concept that has attracted the interest of many researchers and used to build confident relations among vehicles. Hence, the authors propose a secured clustering mechanism for messages exchange in VANET in order to organize vehicles into clusters based on vehicles velocity, then CH computes the credibility of message using the reputation of vehicles and the miner controls the vehicle's behavior for verifying the correctness of the message.


2020 ◽  
Vol 69 (8) ◽  
pp. 8914-8924 ◽  
Author(s):  
Jie Cui ◽  
Yali Wang ◽  
Jing Zhang ◽  
Yan Xu ◽  
Hong Zhong

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987807
Author(s):  
Fei Ding ◽  
Xiaojun Sun ◽  
Xiaojin Ding ◽  
Ruoyu Su ◽  
Dengyin Zhang ◽  
...  

The authentication scheme for vehicular ad hoc networks aims to improve the security and integrity of message delivery. The base station manages a large number of vehicular nodes, so the security communications are non-trivial. In this article, we propose an amplify-and-forward strategy for a dual-hop cooperative network in order to improve secure communications for vehicular ad hoc networks. We assume that each vehicular node equipped with a single antenna and derive closed-form expressions for the secure communication rate calculation. Moreover, we propose a cooperative strategy by jointly considering average power scaling and instantaneous power scaling, which are proved to be able to achieve information security. The simulation result shows that the proposed scheme can achieve better performance in scenarios with different signal-to-noise ratio.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877254 ◽  
Author(s):  
Lanjun Dang ◽  
Jie Xu ◽  
Xuefei Cao ◽  
Hui Li ◽  
Jie Chen ◽  
...  

In vehicular ad hoc networks, establishing a secure channel between any two vehicles is fundamental. Authenticated key agreement is a useful mechanism, which can be used to negotiate a shared key for secure data transmission between authentic vehicles in vehicular ad hoc networks. Among the existing identity-based two-party authenticated key agreement protocols without pairings, there are only a few protocols that provide provable security in strong security models such as the extended Canetti–Krawczyk model. This article presents an efficient pairing-free identity-based one-round two-party authenticated key agreement protocol with provable security, which is more suitable for real-time application environments with highly dynamic topology such as vehicular ad hoc networks than the existing identity-based two-party authenticated key agreement protocols. The proposed protocol is proven secure under the passive and active adversaries in the extended Canetti–Krawczyk model based on the Gap Diffie–Hellman assumption. The proposed protocol can capture all essential security attributes including known-session key security, perfect forward secrecy, basic impersonation resistance, key compromise impersonation resistance, unknown key share resistance, no key control, and ephemeral secrets reveal resistance. Compared with the existing identity-based two-party authenticated key agreement protocols, the proposed protocol is superior in terms of computational cost and running time while providing higher security.


2020 ◽  
Vol 21 (3) ◽  
pp. 425-440 ◽  
Author(s):  
Sumit Kumar ◽  
Jaspreet Singh

The new age of the Internet of Things (IoT) is motivating the advancement of traditional Vehicular Ad-Hoc Networks (VANETs) into the Internet of Vehicles (IoV). This paper is an overview of smart and secure communications to reduce traffic congestion using IoT based VANETs, known as IoV networks. Studies and observations made in this paper suggest that the practice of combining IoT and VANET for a secure combination has rarely practiced. IoV uses real-time data communication between vehicles to everything (V2X) using wireless communication devices based on fog/edge computing; therefore, it has considered as an application of Cyber-physical systems (CPS). Various modes of V2X communication with their connecting technologies also discussed. This paper delivers a detailed introduction to the Internet of Vehicles (IoV) with current applications, discusses the architecture of IoV based on currently existing communication technologies and routing protocols, presenting different issues in detail, provides several open research challenges and the trade-off between security and privacy in the area of IoV has reviewed. From the analysis of previous work in the IoV network, we concluded the utilization of artificial intelligence and machine learning concept is a beneficial step toward the future of IoV model.


Vehicular Ad Hoc Networks (VANETs) are the newest for of Ad Hoc Networks in which moving vehicles act as routers and nodes to form a network. VANETs use many cryptographic approaches like symmetric key approaches, public key approaches, certificate revocation, pseudonym based approaches, identity-based cryptography, identity-based signature, Elliptical Curve Cryptography (ECC) etc. for secure communication. These techniques use public and private keys for enhancing the security of messages and all these keys are stored on hardware devices like TPDs (Temper Proof Devices) in VANETs. TPDs are protected by the cryptographic algorithms. In this present era of technology these algorithms and their online simulators are freely available on internet and can be easily intruded. There is a potential need to enhance the security of these keys. In this paper we worked on enhancing the security of ECC keys stored in TPDs of VANETs using a specific network of Artificial Neural Networks.


Sign in / Sign up

Export Citation Format

Share Document