scholarly journals A novel soil quality assessment method for sustainable soil management and enhancing crop productivity in tribal areas of central India

2021 ◽  
Vol 22 (3) ◽  
pp. 315-324
Author(s):  
Rajendiran S. Selladurai ◽  
Mohan Lal Dotaniya ◽  
M Vassanda Coumar ◽  
Samaresh Kundu ◽  
Nishant Kumar Sinha ◽  
...  

Soil quality degradation is a major threat to any agricultural production system. Therefore periodical monitoring of soil quality status is inevitable for sustainable management of agricultural production systems. Though there are various methods available to assess the soil quality, simple and management oriented methods are necessary. The current investigation aimed to evaluate soil quality of tribal areas of central India adopting minimum dataset of 15 soil physical, chemical and biological parameters. A novel scoring technique was followed to score soil quality indicators based on its relation with crop yield, degree of variation and percent deficiency. Relative soil quality index (RSQI) was calculated and was correlated with crop productivity. Most of the soils in the region had poor soil quality (77.2% in Jhabua, 85.4% in Alirajpur and 67.2% in Dhar) with low crop yield. The major constraints of crop production in these areas were low soil organic carbon (<0.5%), available N (<280 kg ha-1), S (<10 mg kg-1), P (<10 kg ha-1), Zn (<0.5 mg kg-1), dehydogenase activity (10 ?g TPF g-1 24 h-1) and soil depth (<1 m). Adopting sustainable management practices could improve soil quality and crop productivity. This new approach is simple and systematic; this principle can be easily adoptable to other locations, and principally focuses on management related and soil parameters that constraint to production and ecological functions.

2020 ◽  
Vol 8 (4) ◽  
pp. 983-989
Author(s):  
Rajendiran Selladurai ◽  
Mohanlal Dotaniya ◽  
Vassanda Coumar Mounisamy ◽  
Nishant Kumar Sinha ◽  
Vinay Kumar Singh ◽  
...  

2013 ◽  
Vol 59 (3) ◽  
pp. 141-153 ◽  
Author(s):  
Chang Ting Wang ◽  
Gen Xu Wang ◽  
Wei Liu ◽  
Yong Wang ◽  
Lei Hu ◽  
...  

Grassland restoration, which utilizes agricultural practices (e.g., ploughing, harrowing, and fertilization), can not only change ecosystem processes to support the survival of native plants but can also affect soil microbial biomass and activity. In an artificial grassland established to restore a degraded meadow, parameters including coverage, species richness, diversity, and biomass (including above- and below-ground biomass) generally increased after four years of restoration. Likewise, soil organic matter (SOM), total nitrogen (N), available N, total phosphorus (P), and available P exhibited the same trend. The activities of selected enzymes decreased with soil depth (P < 0.05) and increased during the successional process associated with restoration. Soil enzyme activities were related to the physico-chemical characteristics of the soil and plant primary production. After four years of restoration, the plants and soils were resilient to the grassland restoration process. The results of the present study suggest a significant positive impact of artificial grassland establishment on soil quality. Artificial grassland establishment was an effective measure for restoring heavily degraded alpine meadows in the Qinghai–Tibetan Plateau region. The rapid establishment of vegetative cover and plant functional group composition after artificial grassland construction are fundamental for limiting soil erosion and restoring the initial ecosystem function. As soil is a fundamental component of every terrestrial ecosystem, soil restoration is a vital process during ecological restoration. Thus, an increase in the nutrient status of the soil is important for the sustainable development of alpine meadows. The long-term accumulation of SOM, the retention of nutrients, and the buildup of microbial biomass are ultimately attributed to labile carbon input from plant primary production.


Climate ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 126 ◽  
Author(s):  
Arpita Panda ◽  
Netrananda Sahu ◽  
Swadhin Behera ◽  
Takahiro Sayama ◽  
Limonlisa Sahu ◽  
...  

Most tropical regions in the world are vulnerable to climate variability, given their dependence on rain-fed agricultural production and limited adaptive capacity owing to socio-economic conditions. The Kalahandi, Bolangir, and Koraput districts of the south-western part of Odisha province of India experience an extreme sub-humid tropical climate. Based on the observed changes in the magnitude and distribution of rainfall and temperature, this study evaluates the potential impact of climate variation on agricultural yield and production in these districts. The study is conducted by taking into account meteorological data like rainfall and temperature from 1980 to 2017 and crop productivity data from 1980–81 to 2016–17. Additionally, climate variability indices like Monsoon Index, Oceanic Nino Index, and NINO-3 and NINO 3.4 are used. To analyse the data, various statistical techniques like correlation and multiple linear regression are used. The amount of monsoon rainfall is found to have a significant impact on crop productivity, compared to temperature, in the study area, and as a result the Monsoon Index has a determining impact on crop yield among various indices.


Author(s):  
Maximilian Meyer ◽  
Dörte Diehl ◽  
Gabriele Ellen Schaumann ◽  
Katherine Muñoz

AbstractPlastic and straw coverage (PC and SC) are often combined with fungicide application but their influence on fungicide entry into soil and the resulting consequences for soil quality are still unknown. The objective of this study was to investigate the impact of PC and SC, combined with fungicide application, on soil residual concentrations of fungicides (fenhexamid, cyprodinil, and fludioxonil), soil fungal biomass, mycotoxin occurrence, and soil organic matter (SOM) decomposition, depending on soil depth (0–10, 10–30, 30–60 cm) and time (1 month prior to fungicide application and respectively 1 week, 5 weeks, and 4 months afterwards). Soil analyses comprised fungicides, fusarium mycotoxins (deoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, and zearalenone), ergosterol, soil microbial carbon and nitrogen, soil organic carbon, dissolved organic carbon, and pH. Fludioxonil and cyprodinil concentrations were higher under SC than under PC 1 week and 5 weeks after fungicide application (up to three times in the topsoil) but no differences were observed anymore after 4 months. Fenhexamid was not detected, presumably because of its fast dissipation in soil. The higher fludioxonil and cyprodinil concentrations under SC strongly reduced the fungal biomass and shifted microbial community towards larger bacterial fraction in the topsoil and enhanced the abundance and concentration of deoxynivalenol and 15-acetyldeoxynivalenol 5 weeks after fungicide application. Independent from the different fungicide concentrations, the decomposition of SOM was temporarily reduced after fungicide application under both coverage types. However, although PC and SC caused different concentrations of fungicide residues in soil, their impact on the investigated soil parameters was minor and transient (< 4 months) and hence not critical for soil quality.


Author(s):  
V. K. Kharche ◽  
S. M. Patil ◽  
D. V. Mali ◽  
S. M. Jadhao ◽  
A. O. Shirale ◽  
...  

2016 ◽  
Vol 49 (4) ◽  
pp. 5-14
Author(s):  
S. Ali ◽  
S.A. Raza ◽  
Z. Sarwar ◽  
M.S. Sani

Abstract A study was carried out in field experimental area of directorate of land reclamation Punjab, Lahore, to investigate the effect of experimentally quantified commercial sulphuric acid (76%) on residual sodium carbonate (RSC) of water, soil quality and crop yield. The findings were clear indications of effectiveness of acid injection approach to treat water. The sulphuric acid application reduced the RSC value of 6.1 to nil by making (T2) slight change in EC of water. This treated water not only improved the soil quality by decreasing its calcareousness from 20 to 17.2 making soil soft while the same increased to 23 in control (T1), where not acid amendment was done. Similarly, SAR of soil was also restricted from an increase by acid treated water rather than the control set of experiment. To make RSC nil, 5.19 liters of sulphuric acids were injected in water for 3 acre inch irrigation. An increase of 16.65% in grain yield of wheat crop was observed upon harvesting in T2, in comparison with control. Ascorbic acid and total phenolic contents (TPC) were also high in T2, followed by T3 and T1. All the changes in soil parameters and crop yield were found statistically significant.


Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 51 ◽  
Author(s):  
Kamaljit K. Sangha ◽  
Rajesh K. Jalota ◽  
David J. Midmore

In Queensland, land is cleared at high rates to develop pastures for enhanced production and the associated monetary gains. However, pasture production declines over time in cleared pastures until a new equilibrium is reached. The present study focussed on elucidating the reasons for decline in pasture production and finding the key soil properties that are affected due to clearing. Paired sites for cleared and uncleared pastures were selected to represent 3 dominant tree communities of the semi-arid tropics in central Queensland, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared pastures were chosen to represent 3 different durations of time since clearing (5, 11–13, and 33 years) to evaluate the temporal impact of clearing on soil properties. Various soil parameters were studied: macronutrients—available N (NH4+and NO3–), total N, and available P; micronutrients—Cu, Fe, Zn, and Mn; exchangeable cations—Ca, Mg, Na, and K (also macronutrients); pHw; and electrical conductivity. Of these, pHw showed a significant response to time of clearing for all 3 tree communities. Soil pHw increased significantly at cleared sites relative to uncleared (native woodland) pastures, and the increase was highly correlated with concentrations of exchangeable Ca, Mg, and Na. The change in soil pHw and exchangeable cations was more evident at >0.30 m soil depth. The increase in soil pHw in cleared pastures decreased the availability of soil nutrients for plant growth and, hence, pasture productivity. The interactions of different soil properties down the profile as a result of changes caused by clearing are important when interpreting the effects of clearing on soil properties.


2015 ◽  
Vol 38 (3) ◽  
pp. 201-208
Author(s):  
Ram Sharma ◽  
M.K. Gupta

Physiochemical attributes of soil under Schima-Castanopsis forest managed by the local community as Community Forest user’s group in Lesser Himalayan meta-sedimentary zone in Hemja VDC of Kaski district, western Nepal was estimated to evaluate the soil fertility status and soil quality Index. Soil organic carbon was varied from 0.62 to 3.73 per cent and soil organic matter 1.06 to 6.41 per cent in different layers in the soils at different altitudes. The mean soil pH of all soil layers was moderately acidic. The soil acidity showed decreasing trend with increasing depths. The bulk density was increases with increasing soil depths and varied from 0.78 to 1.22 g/cm3 in different soil layers. Total nitrogen varied from 0.11 percent in lowest layer (90-120 cm) to 0.40 in top layer (0-15 cm) at different elevation. The available phosphorus in different soil layers varied from 1.48 to14.90 mg kg-1. The layer wise mean value of available phosphorus was observed maximum in lowest soil depth 90-120 cm (11.76 mg kg-1) followed by 0-15 cm layer (10.13 mg kg-1). Exchangeable potassium content under in all soil depths varied from 29.40 mg kg-1 to 72.85 mg kg-1. The layer wise exchangeable potassium content was observed maximum in 90-120 cm depth (64.17 mg kg-1) and 60-90 cm (64.05 mg kg-1) followed by 0-15 cm soil depth (58.23 mg kg-1). Differences were tested through one way ANOVA of the studied soil parameters in different altitudes and observed that they were statistically significant at 0.05 level (p = <0.05). Pearson correlation analysis among the different soil parameters in TCF were showed statistically significant at the 0.01 level (2 – tailed) and 0.05 levels (2 - tailed). The Soil Quality Index of surface layer at all altitudes was higher and varied from 0.62 to 0.76 (fair to good) as compared to subsurface layer that was ranged from 0.54 to 0.56 (fair). The SQI was decreased with increasing soil depths. An average SQI in TCF was 0.60 (fair) up to 120 cm depths.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Sign in / Sign up

Export Citation Format

Share Document