Onshore Wind Energy Siting Atlas I: Mapping and Suitability Assessment of Wind Resource Classification

2021 ◽  
Vol 25 (2) ◽  
pp. 61-66
Author(s):  
Jin-Young Kim ◽  
◽  
Sujin Hwang ◽  
Deok-Oh Iim ◽  
Hyun-Goo Kim
2021 ◽  
Vol 6 ◽  
pp. 32
Author(s):  
Kais Muhammed Fasel ◽  
Abdul Salam K. Darwish ◽  
Peter Farrell ◽  
Hussein Kazem

The continuous increase in clean energy demand and reduced CO2 emissions in the UAE and specifically the Emirate of Ajman has put an extreme challenge to the Government. Ajman is one of the seven emirates constituting the United Arab Emirates (UAE). Ajman is located along the Arabian Gulf on its West and bordered by the Emirate of Sharjah on its North, South, and East. The government is taking huge steps in including sustainability principles and clean energy in all of its developments. Successful implementation of green architecture law decree No 10 of 2018 effectively is a sign of such an initiative. Renewable energy sources in this country have had two folds of interest in solar and wind. Recent research works supported the feasibility of using wind energy as an alternative clean source of energy. Site-specific and accurate wind speed information is the first step in the process of bankable wind potential and wind Atlas. This study has compared how wind speed and its distribution varies for similar offshore and onshore locations between two different mesoscale data sources. Also, discussed the main environmental characteristics of Ajman that would influence the implementation of a major wind energy project. In addition, the study made a brief critical overview of the major studies undertaken in the Middle East and North Africa (MENA) region on wind resource assessment. Finally, based on the results, the study makes conclusions, recommendations and a way forward for a bankable wind resources assessment in the Emirate of Ajman. This paper would alert the wind energy industry about the consequence of not considering the best error corrected site specific suitable wind resource data along with other environmental characteristics. The study results show that for offshore, there is 2.9 m/s and for Onshore 4.9 m/s variations in wind speed at the same location between ECMWF Reanalysis (ERA-5) and NASA Satellite data. Hence It is concluded that error corrected site-specific wind resource assessment is mandatory for assessing the available bankable wind potential since there are considerable variations in wind speed distributions between mesoscale data sets for similar locations. The study also identifies that the Emirate of Ajman has limited space for onshore wind farms; hence the offshore site seems to have good potential that can be utilised for energy generation. However, individual wind turbines can be installed for exploiting the available site-specific onshore wind energy. Finally, the study recommends a way forward for a comprehensive wind resource assessment to help the Emirate of Ajman form a sustainable wind power generation policy.


2021 ◽  
Author(s):  
Manuel Eising ◽  
Hannes Hobbie ◽  
Dominik Möst

<p><strong>Keywords</strong>: Market value, Technological diversification, Geographical diversification, Spatial value factor distribution</p><p>Ambitious climate and energy targets require environmentally compatible energy generation with a high utilisation of renewable energy sources. However, due to the intermittent appearance of wind and PV feed-in, variable renewable energy (VRE) reveals significantly lower market values than conventional dispatchable power (Joskow, 2011). Additionally, with higher VRE shares a significant market value drop of wind and solar power has been observed in recent years as a result of the merit order effect (Hirth, 2013). Moreover, results by Engelhorn and Müsgens (2018) and Becker and Thrän (2018) have indicated regional disparities in empirical market values for Germany.  This poses interest on what exactly drives and how to quantify the development and spatial distribution of VRE market values.</p><p>Against this background, an electricity market model is applied to trace the development of spatial market values based on model-endogenous electricity prices. A special feature of the model is the inclusion of highly regionally disaggregated weather data which allows to investigate effects of different geographical and technological VRE diversification strategies in Germany until 2035 (Eising et al., 2020). The results of this research are threefold:</p><ul><li>Technological diversity: results show a significant decrease in PV and onshore wind value factors as VRE shares increase. Replacing onshore wind energy by offshore wind energy reduces the volatility and counteracts the value drop of onshore wind, offshore wind and PV.</li> <li>Geographical diversity: results indicate that geographical diversification does not necessarily mitigate decreasing VRE value factors. Under specific circumstances, a higher concentration at sites with lower full-load hours and corresponding higher feed-in volatility potentially mitigates positive effects from more spatially distributed generation.</li> <li>Spatial distribution of value factors: for all mitigation strategies and for wind and PV the spatial value factor distribution shows future increases in regional disparities. However, regional value factor disparities are most distinct in case of onshore wind. The analysis reveals two significant drivers: first, a negative relationship between the regional wind capacity density and their regional value factors can be observed. Second, results indicate a negative relationship between site-specific wind feed-in volatility and the value factor.</li> </ul><p> Summarising, the analysis highlights the importance of considering spatial market values in efficiently designing future electricity markets.  </p><p> </p><p><strong>References</strong></p><p>Becker, R., Thrän, D., 2018. Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems. Energies 11, 978. https://doi.org/10.3390/en11040978</p><p>Eising, M., Hobbie, H., Möst, D., 2020. Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies? Energy Econ. 86, 104638. https://doi.org/10.1016/j.eneco.2019.104638</p><p>Engelhorn, T., Müsgens, F., 2018. How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany. Energy Econ. 72, 542–557. https://doi.org/10.1016/j.eneco.2018.04.022</p><p>Hirth, L., 2013. The market value of variable renewables: The effect of solar wind power variability on their relative price. Energy Econ. 38, 218–236.</p><p>Joskow, P.L., 2011. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies. Am. Econ. Rev. 101, 238–241.</p>


Wind is a powerful and renewable source of energy that flows in every corner of the surface of the planet. As the world moves towards renewable and alternate energy sources, the potential of wind energy has been recognized and methods to use it to its maximum potential are being explored. India has been harnessing wind power over the years, but only lately, it has sent an ambitious target of achieving 60 gigawatts (GW) of wind installed capacity by 2022. The government has issued several tenders to invite private players or Independent Power Producers (IPPs) to develop wind energy projects. Many foreign investors and the Private Equity players have shown interest in investing in this growing renewable energy (RE) market in India. However, developing a wind project comes with lot many challenges as compared to any other RE project. These challenges range from land availability to seeking grid connectivity approvals and evacuation of the power. Along with this, the current reverse bidding process for the tariffs, have made the per unit tariffs to cost as low as INR 2.4. Hence, it is important to consider the technical and commercial feasibility of the project to function at these tariffs. This paper studies the current scenario of wind energy in the Indian market and analysis the potential for the development of wind projects. It also analyses the technical and commercial feasibility of the project by assuming a 300 MW project, having INR 2.5 as tariff, using Wind Resource Assessment (WRA) and Financial Model.


2015 ◽  
Vol 12 (1) ◽  
pp. 85-89 ◽  
Author(s):  
A. Giyanani ◽  
W. Bierbooms ◽  
G. van Bussel

Abstract. Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.


2020 ◽  
Vol 54 (6) ◽  
pp. 37-43
Author(s):  
Alicia M. Gorton ◽  
Will J. Shaw

AbstractAs countries continue to implement sustainable and renewable energy goals, the need for affordable low-carbon technologies, including those related to offshore wind energy, is accelerating. The U.S. federal government recognizes the environmental and economic benefits of offshore wind development and is taking the necessary steps to overcome critical challenges facing the industry to realize these benefits. The U.S. Department of Energy (DOE) is investing in buoy-mounted lidar systems to facilitate offshore measurement campaigns that will advance our understanding of the offshore environment and provide the observational data needed for model validation, particularly at hub height where offshore observations are particularly lacking. On behalf of the DOE, the Pacific Northwest National Laboratory manages a Lidar Buoy Program that facilitates meteorological and oceanographic data collection using validated methods to support the U.S. offshore wind industry. Since being acquired in 2014, two DOE lidar buoys have been deployed on the U.S. east and west coasts, and their data represent the first publicly available multi-seasonal hub height data to be collected in U.S. waters. In addition, the buoys have undergone performance testing, significant upgrades, and a lidar validation campaign to ensure the accuracy and reliability of the lidar data needed to support wind resource characterization and model validation (the lidars were validated against a reference lidar installed on the Air-Sea Interaction Tower operated by the Woods Hole Oceanographic Institution). The Lidar Buoy Program is providing valuable offshore data to the wind energy community, while focusing data collection on areas of acknowledged high priority.


Sign in / Sign up

Export Citation Format

Share Document