Light Enhanced Absorption of Graphene Based on Parity-time Symmetry Structure

2022 ◽  
Vol 43 (01) ◽  
pp. 119-128
Author(s):  
Ling-jun YI ◽  
◽  
Chang-hong LI
Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1513
Author(s):  
Lingjun Yi ◽  
Changhong Li

In the field of modern optical communication systems and photoelectric detection, new components with complex functions and excellent performance are urgently needed. In this paper, a graphene-based parity–time (PT) symmetry structure is proposed, which is achieved by preparing the graphene layer on the top of a PT-symmetry photonic crystal. The transfer matrix method was used to calculate the absorptance of graphene, and a unique amplified absorption effect was found. Meanwhile, the peak value and wavelength position of the absorption can be modulated via the applied electric field. The results show that by adjusting the negative square-wave electric field from −3.5 × 10−5 to −13.5 × 10−5 V/nm (or the positive square-wave electric field from 2 × 10−5 to 11 × 10−5 V/nm), the proposed structure can achieve in-phase (or out-phase) enhanced absorption for the communication wavelength 1550 nm, with the absorption of graphene from 17 to 28 dB (or 30 to 15 dB) corresponding to the square-wave modulation electric field change. The modulable absorption properties of graphene in the structure have potential in optoelectronic devices and optical communication systems.


2018 ◽  
Vol 45 (7) ◽  
pp. 0710002
Author(s):  
张亦弛 Zhang Yichi ◽  
江晓明 Jiang Xiaoming ◽  
夏景 Xia Jing ◽  
方云团 Fang Yuntuan

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1030
Author(s):  
Lingjun Yi ◽  
Changhong Li

To realize the design of a medical sensor with excellent comprehensive performance indexes, herein, a plasma concentration sensing model satisfying the Parity-Time (PT) symmetric condition is proposed. In this paper, the transfer matrix method was used to simulate the transmittance spectrum of the structure, according to the amplification effect on defect mode transmission and various detection performance indexes of the structure. We numerically optimized the parameters of the structure, such as the number of PT-symmetry unit cell N, the sample layer thickness dD as well as the macroscopic Lorentz oscillation intensity α in the PT-symmetry unit cell. The calculation results demonstrate that when the sample concentration changes from 0 g/L to 50 g/L, the wavelength of defect peak shifts from 1538 nm to 1561 nm, and the average quality factor, sensitivity, average figure of merit, average detection limit and average resolution of the structure can reach 78,564, 0.4409 nm/(g/L) (or 227.05 nm/RIU), 11,515 RIU−1, 5.1 × 10−6 RIU and 0.038 g/L, respectively. Not only the sensitivity and resolution of the PT-symmetry structure are better than that of the similar sensors, but it also has excellent comprehensive detection performance, which indicates that the developed sensor can be used in high-precision biomedical detection devices.


2018 ◽  
Vol 12 (03) ◽  
pp. 1 ◽  
Author(s):  
Yi-chi Zhang ◽  
Yun-tuan Fang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arik Bergman ◽  
Robert Duggan ◽  
Kavita Sharma ◽  
Moshe Tur ◽  
Avi Zadok ◽  
...  

AbstractThe exotic physics emerging in non-Hermitian systems with balanced distributions of gain and loss has recently drawn a great deal of attention. These systems exhibit phase transitions and exceptional point singularities in their spectra, at which eigen-values and eigen-modes coalesce and the overall dimensionality is reduced. So far, these principles have been implemented at the expense of precise fabrication and tuning requirements, involving tailored nano-structured devices with controlled optical gain and loss. In this work, anti-parity-time symmetric phase transitions and exceptional point singularities are demonstrated in a single strand of single-mode telecommunication fibre, using a setup consisting of off-the-shelf components. Two propagating signals are amplified and coupled through stimulated Brillouin scattering, enabling exquisite control over the interaction-governing non-Hermitian parameters. Singular response to small-scale variations and topological features arising around the exceptional point are experimentally demonstrated with large precision, enabling robustly enhanced response to changes in Brillouin frequency shift.


2020 ◽  
Author(s):  
Edgar Daniel Rodriguez Velasquez ◽  
Olga Kosheleva ◽  
Vladik Kreinovich
Keyword(s):  

Nanoscale ◽  
2014 ◽  
Vol 6 (15) ◽  
pp. 9148-9156 ◽  
Author(s):  
Joyashish Debgupta ◽  
Ramireddy Devarapalli ◽  
Shakeelur Rahman ◽  
Manjusha V. Shelke ◽  
Vijayamohanan K. Pillai

Heterojunction (type II) of self standing, vertically aligned CdSe NTs (n-type) with electrodeposited Cu2O (p-type) exhibits excellent photoresponse, resulting from enhanced absorption of light and faster transport of photogenerated charge carriers by CdSe NTs.


2021 ◽  
Vol 23 (5) ◽  
Author(s):  
Piotr Dubinski ◽  
Katarzyna Czarzasta ◽  
Agnieszka Cudnoch-Jedrzejewska

Abstract Purpose of Review Based on the available data, it can be assumed that microbiota is an integral part of the human body. The most heavily colonized area of the human body is the gut, with bacterial accumulation ranging from 101–103 cells/g in the upper intestine to 1011–1012 cells/g in the colon. However, colonization of the gut is not the same throughout, as it was shown that there are differences between the composition of the microbiota in the intestine lumen and in the proximity of the mucus layer. Recent Findings Gut microbiota gradient can be differentially regulated by factors such as obesity and chronic stress. In particular, a high fat diet influences the gut microbial composition. It was also found that chronic stress may cause the development of obesity and thus change the organization of the intestinal barrier. Recent research has shown the significant effect of intestinal microflora on cardiovascular function. Enhanced absorption of bacterial fragments, such as lipopolysaccharide (LPS), promotes the onset of “metabolic endotoxemia,” which could activate toll-like receptors, which mediates an inflammatory response and in severe cases could cause cardiovascular diseases. It is presumed that the intestinal microbiota, and especially its metabolites (LPS and trimethylamine N-oxide (TMAO)), may play an important role in the pathogenesis of arterial hypertension, atherosclerosis, and heart failure. Summary This review focuses on how gut microbiota can change the morphological and functional activity of the cardiovascular system in the course of obesity and in conditions of chronic stress.


Sign in / Sign up

Export Citation Format

Share Document