scholarly journals Impatient customers in Markovian queue with Bernoulli feedback and waiting server under variant working vacation policy

2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Amina Angelika Bouchentouf ◽  
Lahcene Yahiaoui ◽  
Mokhtar Kadi ◽  
Shakir Majid

This paper deals with customers’ impatience behaviour for single server Markovian queueing system under K-variant working vacation policy, waiting server, Bernoulli feedback, balking, reneging, and retention of reneged customers. Using probability generating function (PGF) technique, we obtain the steady-state solution of the system. In addition, we prove the stochastic decomposition properties. Useful performance measures of the considered queueing system are derived. A cost model is developed. Then, the parameter optimisation is carried out numerically, using quadratic fit search method (QFSM). Finally, numerical examples are provided in order to visualize the analytical results.

Author(s):  
P. Vijaya Laxmi ◽  
Rajesh P.

This article analyzes an infinite buffer discrete-time single server queueing system with variant working vacations in which customers arrive according to a geometric process. As soon as the system becomes empty, the server takes working vacations. The server will take a maximum number K of working vacations until either he finds at least on customer in the queue or the server has exhaustively taken all the vacations. The service times during regular busy period, working vacation period and vacation times are assumed to be geometrically distributed. The probability generating function of the steady-state probabilities and the closed form expressions of the system size when the server is in different states have been derived. In addition, some other performance measures, their monotonicity with respect to K and a cost model are presented to determine the optimal service rate during working vacation.


Author(s):  
Amina Bouchentouf ◽  
Mohamed Boualem ◽  
Mouloud Cherfaoui ◽  
Latifa Medjahri

We consider a single server Markovian feedback queue with variant of multiple vacation policy, balking, server's states-dependent reneging, and retention of reneged customers. We obtain the steady-state solution of the considered queue based on the use of probability generating functions. Then, the closed-form expressions of different system characteristics are derived. Finally, we present some numerical results in order to show the impact of the parameters of impatience timers on the performance measures of the system.


Author(s):  
Amina Bouchentouf ◽  
Mohamed Boualem ◽  
Mouloud Cherfaoui ◽  
Latifa Medjahri

We consider a single server Markovian feedback queue with variant of multiple vacation policy, balking, server's states-dependent reneging, and retention of reneged customers. We obtain the steady-state solution of the considered queue based on the use of probability generating functions. Then, the closed-form expressions of different system characteristics are derived. Finally, we present some numerical results in order to show the impact of the parameters of impatience timers on the performance measures of the system.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 762
Author(s):  
P. Rajadurai ◽  
S. Venkatesh ◽  
K. Parameswari

In this paper, we consider a single server retrial queueing system with working vacation and two classes of customers, which are priority customers and ordinary customers. The single server provides fluctuating modes (optional phases) of services. Using the method of Probability Generating Function (PGF) approach and supplementary variable technique, the steady state results are obtained. 


2018 ◽  
Vol 10 (2) ◽  
pp. 218-241
Author(s):  
Amina Angelika Bouchentouf ◽  
Abdelhak Guendouzi ◽  
Abdeldjebbar Kandouci

Abstract This paper concerns the analysis of a Markovian queueing system with Bernoulli feedback, single vacation, waiting server and impatient customers. We suppose that whenever the system is empty the sever waits for a random amount of time before he leaves for a vacation. Moreover, the customer’s impatience timer depends on the states of the server. If the customer’s service has not been completed before the impatience timer expires, the customer leaves the system, and via certain mechanism, impatient customer may be retained in the system. We obtain explicit expressions for the steady-state probabilities of the queueing model, using the probability generating function (PGF). Further, we obtain some important performance measures of the system and formulate a cost model. Finally, an extensive numerical study is illustrated.


1962 ◽  
Vol 2 (4) ◽  
pp. 499-507 ◽  
Author(s):  
G. F. Yeo

SummaryThis paper considers a generalisation of the queueing system M/G/I, where customers arriving at empty and non-empty queues have different service time distributions. The characteristic function (c.f.) of the stationary waiting time distribution and the probability generating function (p.g.f.) of the queue size are obtained. The busy period distribution is found; the results are generalised to an Erlangian inter-arrival distribution; the time-dependent problem is considered, and finally a special case of server absenteeism is discussed.


2019 ◽  
Vol 53 (5) ◽  
pp. 1861-1876 ◽  
Author(s):  
Sapana Sharma ◽  
Rakesh Kumar ◽  
Sherif Ibrahim Ammar

In many practical queuing situations reneging and balking can only occur if the number of customers in the system is greater than a certain threshold value. Therefore, in this paper we study a single server Markovian queuing model having customers’ impatience (balking and reneging) with threshold, and retention of reneging customers. The transient analysis of the model is performed by using probability generating function technique. The expressions for the mean and variance of the number of customers in the system are obtained and a numerical example is also provided. Further the steady-state solution of the model is obtained. Finally, some important queuing models are derived as the special cases of this model.


1993 ◽  
Vol 6 (4) ◽  
pp. 359-384 ◽  
Author(s):  
David C. R. Muh

The author studies the queueing process in a single-server, bulk arrival and batch service queueing system with a compound Poisson input, bilevel service delay discipline, start-up time, and a fixed accumulation level with control operating policy. It is assumed that when the queue length falls below a predefined level r(≥1), the system, with server capacity R, immediately stops service until the queue length reaches or exceeds the second predefined accumulation level N(≥r). Two cases, with N≤R and N≥R, are studied.The author finds explicitly the probability generating function of the stationary distribution of the queueing process and gives numerical examples.


Sign in / Sign up

Export Citation Format

Share Document