Hadamard’s inequality and its extensions for conformable fractional integrals of any order α>0

2018 ◽  
Vol 27 (2) ◽  
pp. 197-206
Author(s):  
ERHAN SET ◽  
◽  
AHMET OCAK AKDEMIR ◽  
I. MUMCU ◽  
◽  
...  

Recently the authors Abdeljawad [Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66] and Khalil et al. [Khalil, R., Horani, M. Al., Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70] introduced a new and simple well-behaved concept of fractional integral called conformable fractional integral. In this article, we establish Hermite-Hadamard’s inequalities for conformable fractional integral. We also give extensions of Hermite-Hadamard type inequalities for conformable fractional integrals.

2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1503 ◽  
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Artion Kashuri

There have been many different definitions of fractional calculus presented in the literature, especially in recent years. These definitions can be classified into groups with similar properties. An important direction of research has involved proving inequalities for fractional integrals of particular types of functions, such as Hermite–Hadamard–Fejer (HHF) inequalities and related results. Here we consider some HHF fractional integral inequalities and related results for a class of fractional operators (namely, the weighted fractional operators), which apply to function of convex type with respect to an increasing function involving a positive weighted symmetric function. We can conclude that all derived inequalities in our study generalize numerous well-known inequalities involving both classical and Riemann–Liouville fractional integral inequalities.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 485 ◽  
Author(s):  
Hari M. Srivastava ◽  
Arran Fernandez ◽  
Dumitru Baleanu

We consider the well-known Mittag–Leffler functions of one, two and three parameters, and establish some new connections between them using fractional calculus. In particular, we express the three-parameter Mittag–Leffler function as a fractional derivative of the two-parameter Mittag–Leffler function, which is in turn a fractional integral of the one-parameter Mittag–Leffler function. Hence, we derive an integral expression for the three-parameter one in terms of the one-parameter one. We discuss the importance and applications of all three Mittag–Leffler functions, with a view to potential applications of our results in making certain types of experimental data much easier to analyse.


2020 ◽  
Vol 27 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh K. Parmar ◽  
Purnima Chopra

AbstractMotivated mainly by certain interesting recent extensions of the generalized hypergeometric function [H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 2014, 484–491] by means of the generalized Pochhammer symbol, we introduce here a new extension of the generalized Mittag-Leffler function. We then systematically investigate several properties of the extended Mittag-Leffler function including some basic properties, Mellin, Euler-Beta, Laplace and Whittaker transforms. Furthermore, certain properties of the Riemann–Liouville fractional integrals and derivatives associated with the extended Mittag-Leffler function are also investigated. Some interesting special cases of our main results are pointed out.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Waqas Nazeer ◽  
Ghulam Farid ◽  
Zabidin Salleh ◽  
Ayesha Bibi

We have studied the Opial-type inequalities for superquadratic functions proved for arbitrary kernels. These are estimated by applying mean value theorems. Furthermore, by analyzing specific functions, the fractional integral and fractional derivative inequalities are obtained.


2017 ◽  
Vol 23 (2) ◽  
pp. 32-43
Author(s):  
M. V. Kukushkin

In this paper we investigated the qualitative properties of the operator of fractional differentiation in Kipriyanov sense. Based on the concept of multidimensional generalization of operator of fractional differentiation in Marchaud sense we have adapted earlier known techniques of proof theorems of one-dimensional theory of fractional calculus for the operator of fractional differentiation in Kipriyanov sense. Along with the previously known definition of the fractional derivative in the direction we used a new definition of multidimensional fractional integral in the direction of allowing you to expand the domain of definition of formally adjoint operator. A number of theorems that have analogs in one-dimensional theory of fractional calculus is proved. In particular the sufficient conditions of representability of a fractional integral in the direction are received. Integral equality the result of which is the construction of the formal adjoint operator defined on the set of functions representable by the fractional integral in direction is proved.


2021 ◽  
Vol 7 (1) ◽  
pp. 784-803
Author(s):  
Fangfang Ma ◽  

<abstract><p>In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.</p></abstract>


2019 ◽  
Vol 25 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Mehmet Zeki Sarikaya ◽  
Hüseyin Budak

Abstract In this paper, we establish the Opial-type inequalities for a conformable fractional integral and give some results in special cases of α. The results presented here would provide generalizations of those given in earlier works.


Sign in / Sign up

Export Citation Format

Share Document