scholarly journals The Tutte Polynomial of a Graph, Depth-first Search

10.37236/1267 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
Ira M. Gessel ◽  
Bruce E. Sagan

One of the most important numerical quantities that can be computed from a graph $G$ is the two-variable Tutte polynomial. Specializations of the Tutte polynomial count various objects associated with $G$, e.g., subgraphs, spanning trees, acyclic orientations, inversions and parking functions. We show that by partitioning certain simplicial complexes related to $G$ into intervals, one can provide combinatorial demonstrations of these results. One of the primary tools for providing such a partition is depth-first search.

2010 ◽  
Vol 310 (8) ◽  
pp. 1340-1353 ◽  
Author(s):  
Brian Benson ◽  
Deeparnab Chakrabarty ◽  
Prasad Tetali

2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .


1976 ◽  
Vol 6 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Robert Endre Tarjan

10.37236/1697 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Calkin ◽  
C. Merino ◽  
S. Noble ◽  
M. Noy

In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice $L_n$. There the authors gave the following bounds for the asymptotics of $f(n)$, the number of forests of $L_n$, and $\alpha(n)$, the number of acyclic orientations of $L_n$: $$3.209912 \le \lim_{n\to\infty} f(n)^{1/n^2} \le 3.84161$$ and $$22/7 \le \lim_{n\to\infty} \alpha(n)^{1/n^2} \le 3.70925.$$ In this paper we improve these bounds as follows: $$3.64497 \le \lim_{n\to\infty} f(n)^{1/n^2} \le 3.74101$$ and $$3.41358 \le \lim_{n\to\infty} \alpha(n)^{1/n^2} \le 3.55449.$$ We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Art M. Duval ◽  
Caroline J. Klivans ◽  
Jeremy L. Martin

International audience We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups. Nous généralisons la théorie des groupes critiques des graphes aux complexes simpliciaux. Plus précisément, pour un complexe simplicial, nous définissons une famille de groupes abéliens en termes d'opérateurs de Laplace combinatoires, qui généralise la construction du groupe critique d'un graphe. Nous montrons comment réaliser ces groupes critiques explicitement comme conoyaux des opérateurs de Laplace réduits combinatoires, et montrons qu'ils sont finis. Leurs ordres sont obtenus en comptant (avec des poids) des arbres simpliciaux couvrants. Nous décrivons comment les groupes critiques d'un complexe représentent le flux le long de ses faces, et esquissons une autre interprétation potentielle comme analogues des groupes de Chow.


2015 ◽  
Vol 22 (04) ◽  
pp. 707-710 ◽  
Author(s):  
Imran Anwar ◽  
Zahid Raza ◽  
Agha Kashif

In this paper, we introduce the concept of the spanning simplicial complex Δs(G) associated to a simple finite connected graph G. We characterize all spanning trees of the uni-cyclic graph Un,m. In particular, we give a formula for computing the Hilbert series and h-vector of the Stanley-Reisner ring k[Δs(Un,m)]. Finally, we prove that the spanning simplicial complex Δs(Un,m) is shifted and hence is shellable.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050017
Author(s):  
Hery Randriamaro

The Tutte polynomial was originally a bivariate polynomial enumerating the colorings of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila extended the notion of Tutte polynomial to hyperplane arrangements, and computed the Tutte polynomials of the classical root systems for certain prime powers of the first variable at the same time. In this paper, we compute the Tutte polynomial of ideal arrangements. These arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for ideals of root systems. For the ideals of classical root systems, we bring a slight improvement of the finite field method by showing that it can applied on any finite field whose cardinality is not a minor of the matrix associated to the studied hyperplane arrangement. Computing the minor set associated to an ideal of classical root systems particularly permits us to deduce the Tutte polynomials of the classical root systems. For the ideals of the exceptional root systems of type [Formula: see text], [Formula: see text], and [Formula: see text], we use the formula of Crapo.


10.37236/1887 ◽  
2006 ◽  
Vol 11 (2) ◽  
Author(s):  
Emeric Gioan ◽  
Michel Las Vergnas

Comparing two expressions of the Tutte polynomial of an ordered oriented matroid yields a remarkable numerical relation between the numbers of reorientations and bases with given activities. A natural activity preserving reorientation-to-basis mapping compatible with this relation is described in a series of papers by the present authors. This mapping, equivalent to a bijection between regions and no broken circuit subsets, provides a bijective version of several enumerative results due to Stanley, Winder, Zaslavsky, and Las Vergnas, expressing the number of acyclic orientations in graphs, or the number of regions in real arrangements of hyperplanes or pseudohyperplanes (i.e. oriented matroids), as evaluations of the Tutte polynomial. In the present paper, we consider in detail the supersolvable case – a notion introduced by Stanley – in the context of arrangements of hyperplanes. For linear orderings compatible with the supersolvable structure, special properties are available, yielding constructions significantly simpler than those in the general case. As an application, we completely carry out the computation of the active bijection for the Coxeter arrangements $A_n$ and $B_n$. It turns out that in both cases the active bijection is closely related to a classical bijection between permutations and increasing trees.


Sign in / Sign up

Export Citation Format

Share Document