scholarly journals Improved Upper Bounds for Self-Avoiding Walks in ${\bf Z}^{d}$

10.37236/1499 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
André Pönitz ◽  
Peter Tittmann

New upper bounds for the connective constant of self-avoiding walks in a hypercubic lattice are obtained by automatic generation of finite automata for counting walks with finite memory. The upper bound in dimension two is 2.679192495.

2019 ◽  
Vol 30 (06n07) ◽  
pp. 1117-1134
Author(s):  
Galina Jirásková ◽  
Ivana Krajňáková

We investigate the state complexity of the square operation on languages represented by deterministic, alternating, and Boolean automata. For each [Formula: see text] such that [Formula: see text], we describe a binary language accepted by an [Formula: see text]-state deterministic finite automaton with [Formula: see text] final states meeting the upper bound [Formula: see text] on the state complexity of its square. We show that in the case of [Formula: see text], the corresponding upper bound cannot be met. Using the binary deterministic witness for square with [Formula: see text] states where half of them are final, we get the tight upper bounds [Formula: see text] and [Formula: see text] on the complexity of the square operation on alternating and Boolean automata, respectively.


1993 ◽  
Vol 2 (2) ◽  
pp. 115-136 ◽  
Author(s):  
Sven Erick Alm

We present a method for obtaining upper bounds for the connective constant of self-avoiding walks. The method works for a large class of lattices, including all that have been studied in connection with self-avoiding walks. The bound is obtained as the largest eigenvalue of a certain matrix. Numerical application of the method has given improved bounds for all lattices studied, e.g. μ < 2.696 for the square lattice, μ < 4.278 for the triangular lattice and μ < 4.756 for the simple cubic lattice.


2018 ◽  
Vol 29 (05) ◽  
pp. 861-876 ◽  
Author(s):  
Jozef Jirásek ◽  
Galina Jirásková ◽  
Juraj Šebej

A nondeterministic finite automaton is unambiguous if it has at most one accepting computation on every input string. We investigate the state complexity of basic regular operations on languages represented by unambiguous finite automata. We get tight upper bounds for reversal ([Formula: see text]), intersection ([Formula: see text]), left and right quotients ([Formula: see text]), positive closure ([Formula: see text]), star ([Formula: see text]), shuffle ([Formula: see text]), and concatenation ([Formula: see text]). To prove tightness, we use a binary alphabet for intersection and left and right quotients, a ternary alphabet for star and positive closure, a five-letter alphabet for shuffle, and a seven-letter alphabet for concatenation. For complementation, we reduce the trivial upper bound [Formula: see text] to [Formula: see text]. We also get some partial results for union and square.


2019 ◽  
Vol 30 (01) ◽  
pp. 5-27
Author(s):  
Simon Beier ◽  
Markus Holzer ◽  
Martin Kutrib

We consider jumping finite automata and their operational state complexity and decidability status. Roughly speaking, a jumping automaton is a finite automaton with a non-continuous input. This device has nice relations to semilinear sets and thus to Parikh images of regular sets, which will be exhaustively used in our proofs. In particular, we prove upper bounds on the intersection and complementation. The latter result on the complementation upper bound answers an open problem from [G. J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence, 2014]. Moreover, we correct an erroneous result on the inverse homomorphism closure. Finally, we also consider the decidability status of standard problems as regularity, disjointness, universality, inclusion, etc. for jumping finite automata.


1996 ◽  
Vol 321 ◽  
pp. 335-370 ◽  
Author(s):  
R. R. Kerswell

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.


Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon ◽  
Nicole Lemire

AbstractWe find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.



1994 ◽  
Vol 59 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Alistair H. Lachlan ◽  
Robert I. Soare

AbstractWe settle a question in the literature about degrees of models of true arithmetic and upper bounds for the arithmetic sets. We prove that there is a model of true arithmetic whose degree is not a uniform upper bound for the arithmetic sets. The proof involves two forcing constructions.


2016 ◽  
Vol 30 (4) ◽  
pp. 622-639 ◽  
Author(s):  
Gaofeng Da ◽  
Maochao Xu ◽  
Shouhuai Xu

In this paper, we propose a novel method for constructing upper bounds of the quasi-stationary distribution of SIS processes. Using this method, we obtain an upper bound that is better than the state-of-the-art upper bound. Moreover, we prove that the fixed point map Φ [7] actually preserves the equilibrium reversed hazard rate order under a certain condition. This allows us to further improve the upper bound. Some numerical results are presented to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document