scholarly journals Enumerating Lattice Paths Touching or Crossing the Diagonal at a Given Number of Lattice Points

10.37236/2477 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Michael Z. Spivey

We give bijective proofs that, when combined with one of the combinatorial proofs of the general ballot formula, constitute a combinatorial argument yielding the number of lattice paths from $(0,0)$ to $(n,rn)$ that touch or cross the diagonal $y = rx$ at exactly $k$ lattice points.  This enumeration partitions all lattice paths from $(0,0)$ to $(n,rn)$.  While the resulting formula can be derived using results from Niederhausen, the bijections and combinatorial proof are new.

10.37236/731 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Roger E. Behrend

The combinatorics of certain tuples of osculating lattice paths is studied, and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice, each path can take only unit steps rightwards or upwards, and two different paths within a tuple are permitted to share lattice points, but not to cross or share lattice edges. Such path tuples correspond to configurations of the six-vertex model of statistical mechanics with appropriate boundary conditions, and they include cases which correspond to alternating sign matrices. Of primary interest here are path tuples with a fixed number $l$ of vacancies and osculations, where vacancies or osculations are points of the rectangle through which respectively no or two paths pass. It is shown that there exist natural bijections which map each such path tuple $P$ to a pair $(t,\eta)$, where $\eta$ is an oscillating tableau of length $l$ (i.e., a sequence of $l+1$ partitions, starting with the empty partition, in which the Young diagrams of successive partitions differ by a single square), and $t$ is a certain, compatible sequence of $l$ weakly increasing positive integers. Furthermore, each vacancy or osculation of $P$ corresponds to a partition in $\eta$ whose Young diagram is obtained from that of its predecessor by respectively the addition or deletion of a square. These bijections lead to enumeration formulae for tuples of osculating paths involving sums over oscillating tableaux.


1968 ◽  
Vol 11 (4) ◽  
pp. 537-545 ◽  
Author(s):  
S.G. Mohanty ◽  
B.R. Handa

In this note we consider the enumeration of unrestricted and restricted minimal lattice paths from (0, 0) to (m, n), with the following (μ + 2) moves, μ being a positive integer. Let the line segment between two lattice points on which no other lattice point lies be called a step. A lattice path at any stage can have either (1) a vertical step denoted by S0, or (2) a diagonal step parallel to the line x = ty (t = 1,…, μ), denoted by St, or (3) a horizontal step, denoted by Sμ+1.


10.37236/2105 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Emma Yu Jin ◽  
Markus E. Nebel

Let $a_n$ count the number of $2$-dimensional rook paths $\mathcal{R}_{n,n}$ from $(0,0)$ to $(2n,0)$. Rook paths $\mathcal{R}_{m,n}$ are the lattice paths from $(0,0)$ to $(m+n,m-n)$ with allowed steps $(x,x)$ and $(y,-y)$ where $x,y\in\mathbb{N}^{+}$. In answer to the open question proposed by M. Erickson et al. (2010), we shall present a combinatorial proof for the recurrence of $a_n$, i.e., $(n+1)a_{n+1}+9(n-1)a_{n-1}=2(5n+2)a_n$ with initial conditions $a_0=1$ and $a_1=2$. Furthermore, our proof can be extended to show the recurrence for the number of multiple Dyck paths $d_n$, i.e., $(n+2)d_{n+1}+9(n-1)d_{n-1}=5(2n+1)d_n$ with $d_0=1$ and $d_1=1$, where $d_n=\mathcal{N}_n(4)$ and $\mathcal{N}_n(x)$ is Narayana polynomial.


10.37236/886 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Christian Haase ◽  
Benjamin Nill ◽  
Andreas Paffenholz ◽  
Francisco Santos

Fakhruddin has proved that for two lattice polygons $P$ and $Q$ any lattice point in their Minkowski sum can be written as a sum of a lattice point in $P$ and one in $Q$, provided $P$ is smooth and the normal fan of $P$ is a subdivision of the normal fan of $Q$. We give a shorter combinatorial proof of this fact that does not need the smoothness assumption on $P$.


Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


2021 ◽  
Vol 94 ◽  
pp. 103310
Author(s):  
Nancy S.S. Gu ◽  
Helmut Prodinger
Keyword(s):  

1948 ◽  
Vol os-19 (1) ◽  
pp. 238-248 ◽  
Author(s):  
S. BOCHNER ◽  
K. CHANDRASEKHARAN
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1145
Author(s):  
Prem. C. Pandey ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Prussian blue nanoparticles (PBN) exhibit selective fluorescence quenching behavior with heavy metal ions; in addition, they possess characteristic oxidant properties both for liquid–liquid and liquid–solid interface catalysis. Here, we propose to study the detection and efficient removal of toxic arsenic(III) species by materializing these dual functions of PBN. A sophisticated PBN-sensitized fluorometric switching system for dosage-dependent detection of As3+ along with PBN-integrated SiO2 platforms as a column adsorbent for biphasic oxidation and elimination of As3+ have been developed. Colloidal PBN were obtained by a facile two-step process involving chemical reduction in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (EETMSi) and cyclohexanone as reducing agents, while heterogeneous systems were formulated via EETMSi, which triggered in situ growth of PBN inside the three-dimensional framework of silica gel and silica nanoparticles (SiO2). PBN-induced quenching of the emission signal was recorded with an As3+ concentration (0.05–1.6 ppm)-dependent fluorometric titration system, owing to the potential excitation window of PBN (at 480–500 nm), which ultimately restricts the radiative energy transfer. The detection limit for this arrangement is estimated around 0.025 ppm. Furthermore, the mesoporous and macroporous PBN-integrated SiO2 arrangements might act as stationary phase in chromatographic studies to significantly remove As3+. Besides physisorption, significant electron exchange between Fe3+/Fe2+ lattice points and As3+ ions enable complete conversion to less toxic As5+ ions with the repeated influx of mobile phase. PBN-integrated SiO2 matrices were successfully restored after segregating the target ions. This study indicates that PBN and PBN-integrated SiO2 platforms may enable straightforward and low-cost removal of arsenic from contaminated water.


Author(s):  
Ansgar Freyer ◽  
Martin Henk

AbstractGardner et al. posed the problem to find a discrete analogue of Meyer’s inequality bounding from below the volume of a convex body by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question of bounding the number of lattice points of a convex body in terms of slices, as well as projections.


Sign in / Sign up

Export Citation Format

Share Document