scholarly journals Shellability and the Strong gcd-Condition

10.37236/67 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Alexander Berglund

Shellability is a well-known combinatorial criterion on a simplicial complex $\Delta$ for verifying that the associated Stanley-Reisner ring $k[\Delta]$ is Cohen-Macaulay. A notion familiar to commutative algebraists, but which has not received as much attention from combinatorialists as the Cohen-Macaulay property, is the notion of a Golod ring. Recently, Jöllenbeck introduced a criterion on simplicial complexes reminiscent of shellability, called the strong gcd-condition, and he together with the author proved that it implies Golodness of the associated Stanley-Reisner ring. The two algebraic notions were earlier tied together by Herzog, Reiner and Welker, who showed that if $k[\Delta^\vee]$ is sequentially Cohen-Macaulay, where $\Delta^\vee$ is the Alexander dual of $\Delta$, then $k[\Delta]$ is Golod. In this paper, we present a combinatorial companion of this result, namely that if $\Delta^\vee$ is (non-pure) shellable then $\Delta$ satisfies the strong gcd-condition. Moreover, we show that all implications just mentioned are strict in general but that they are equivalences if $\Delta$ is a flag complex.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.



10.37236/6958 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Sara Faridi ◽  
Svenja Huntemann ◽  
Richard J. Nowakowski

Strong placement games (SP-games) are a class of combinatorial games whose structure allows one to describe the game via simplicial complexes. A natural question is whether well-known parameters of combinatorial games, such as "game value", appear as invariants of the simplicial complexes. This paper is the first step in that direction. We show that every simplicial complex encodes a certain type of SP-game (called an "invariant SP-game") whose ruleset is independent of the board it is played on. We also show that in the class of SP-games isomorphic simplicial complexes correspond to isomorphic game trees, and hence equal game values. We also study a subclass of SP-games corresponding to flag complexes, showing that there is always a game whose corresponding complex is a flag complex no matter which board it is played on.



2012 ◽  
Vol 22 (04) ◽  
pp. 279-303 ◽  
Author(s):  
DOMINIQUE ATTALI ◽  
ANDRÉ LIEUTIER ◽  
DAVID SALINAS

We study the simplification of simplicial complexes by repeated edge contractions. First, we extend to arbitrary simplicial complexes the statement that edges satisfying the link condition can be contracted while preserving the homotopy type. Our primary interest is to simplify flag complexes such as Rips complexes for which it was proved recently that they can provide topologically correct reconstructions of shapes. Flag complexes (sometimes called clique complexes) enjoy the nice property of being completely determined by the graph of their edges. But, as we simplify a flag complex by repeated edge contractions, the property that it is a flag complex is likely to be lost. Our second contribution is to propose a new representation for simplicial complexes particularly well adapted for complexes close to flag complexes. The idea is to encode a simplicial complex K by the graph G of its edges together with the inclusion-minimal simplices in the set difference Flag (G)\ K. We call these minimal simplices blockers. We prove that the link condition translates nicely in terms of blockers and give formulae for updating our data structure after an edge contraction. Finally, we observe in some simple cases that few blockers appear during the simplification of Rips complexes, demonstrating the efficiency of our representation in this context.



10.37236/1245 ◽  
1996 ◽  
Vol 3 (1) ◽  
Author(s):  
Art M. Duval

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the Cohen-Macaulay conditions for pure complexes, so that a nonpure shellable complex is sequentially Cohen-Macaulay. We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for the pure case. Immediate consequences include that nonpure shellable complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.



10.37236/1900 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob Jonsson

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.



Author(s):  
Khalid Hatim ◽  
Azeddine Baalal

In this paper, we construct a new framework that’s we call the weighted [Formula: see text]-simplicial complex and we define its spectral gap. An upper bound for our spectral gap is given by generalizing the Cheeger constant. The lower bound for our spectral gap is obtained from the first nonzero eigenvalue of the Laplacian acting on the functions of certain weighted [Formula: see text]-simplicial complexes.



2012 ◽  
Vol 55 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Kotaro Mine ◽  
Katsuro Sakai

AbstractLet |K| be the metric polyhedron of a simplicial complex K. In this paper, we characterize a simplicial subdivision K′ of K preserving the metric topology for |K| as the one such that the set K′(0) of vertices of K′ is discrete in |K|. We also prove that two such subdivisions of K have such a common subdivision.



Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.



2016 ◽  
Vol 08 (03) ◽  
pp. 399-429 ◽  
Author(s):  
A. Costa ◽  
M. Farber

In this paper we introduce and develop the multi-parameter model of random simplicial complexes with randomness present in all dimensions. Various geometric and topological properties of such random simplicial complexes are characterised by convex domains in the high-dimensional parameter space (rather than by intervals, as in the usual one-parameter models). We find conditions under which a multi-parameter random simplicial complex is connected and simply connected. Besides, we give an intrinsic characterisation of the multi-parameter probability measure. We analyse links of simplexes and intersections of multi-parameter random simplicial complexes and show that they are also multi-parameter random simplicial complexes.



2018 ◽  
Vol 30 (2) ◽  
pp. 527-532
Author(s):  
Kouyemon Iriye ◽  
Daisuke Kishimoto

AbstractGolodness of two-dimensional simplicial complexes is studied through polyhedral products, and combinatorial and topological characterizations of Golodness of surface triangulations are given. An answer to the question of Berglund is also given so that there is a two-dimensional simplicial complex which is rationally Golod but not Golod over{\mathbb{Z}/p}.



Sign in / Sign up

Export Citation Format

Share Document