scholarly journals Monomial Ideals of Weighted Oriented Graphs

10.37236/8479 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Yuriko Pitones ◽  
Enrique Reyes ◽  
Jonathan Toledo

Let $I=I(D)$ be the edge ideal of a weighted oriented graph $D$ whose underlying graph is $G$. We determine the irredundant irreducible decomposition of $I$. Also, we characterize the associated primes and the unmixed property of $I$. Furthermore, we give a combinatorial characterization for the unmixed property of $I$, when $G$ is bipartite, $G$ is a graph with whiskers or $G$ is a cycle. Finally, we study the Cohen–Macaulay property of $I$.

2019 ◽  
Vol 29 (03) ◽  
pp. 535-559 ◽  
Author(s):  
Huy Tài Hà ◽  
Kuei-Nuan Lin ◽  
Susan Morey ◽  
Enrique Reyes ◽  
Rafael H. Villarreal

Let [Formula: see text] be a weighted oriented graph and let [Formula: see text] be its edge ideal. Under a natural condition that the underlying (undirected) graph of [Formula: see text] contains a perfect matching consisting of leaves, we provide several equivalent conditions for the Cohen–Macaulayness of [Formula: see text]. We also completely characterize the Cohen–Macaulayness of [Formula: see text] when the underlying graph of [Formula: see text] is a bipartite graph. When [Formula: see text] fails to be Cohen–Macaulay, we give an instance where [Formula: see text] is shown to be sequentially Cohen–Macaulay.


10.37236/270 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryan Shader ◽  
Wasin So

An oriented graph $G^{\sigma}$ is a simple undirected graph $G$ with an orientation $\sigma$, which assigns to each edge a direction so that $G^{\sigma}$ becomes a directed graph. $G$ is called the underlying graph of $G^{\sigma}$, and we denote by $Sp(G)$ the adjacency spectrum of $G$. Skew-adjacency matrix $S( G^{\sigma} )$ of $G^{\sigma}$ is introduced, and its spectrum $Sp_S( G^{\sigma} )$ is called the skew-spectrum of $G^{\sigma}$. The relationship between $Sp_S( G^{\sigma} )$ and $Sp(G)$ is studied. In particular, we prove that (i) $Sp_S( G^{\sigma} ) = {\bf i} Sp(G)$ for some orientation $\sigma$ if and only if $G$ is bipartite, (ii) $Sp_S(G^{\sigma}) = {\bf i} Sp(G)$ for any orientation $\sigma$ if and only if $G$ is a forest, where ${\bf i}=\sqrt{-1}$.


Author(s):  
Mousumi Mandal ◽  
Dipak Kumar Pradhan

Let [Formula: see text] be a weighted oriented graph with the underlying graph [Formula: see text] when vertices with non-trivial weights are sinks and [Formula: see text] be the edge ideals corresponding to [Formula: see text] and [Formula: see text] respectively. We give an explicit description of the symbolic powers of [Formula: see text] using the concept of strong vertex covers. We show that the ordinary and symbolic powers of [Formula: see text] and [Formula: see text] behave in a similar way. We provide a description for symbolic powers and Waldschmidt constant of [Formula: see text] for certain classes of weighted oriented graphs. When [Formula: see text] is a weighted oriented odd cycle, we compute [Formula: see text] and prove [Formula: see text] and show that equality holds when there is only one vertex with non-trivial weight.


10.37236/643 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Yaoping Hou ◽  
Tiangang Lei

An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.


2013 ◽  
Vol 87 (3) ◽  
pp. 514-526 ◽  
Author(s):  
KEIVAN BORNA ◽  
RAHELEH JAFARI

AbstractLet $S$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $S$. We say that $I$ is MHC (that is, $I$ satisfies the maximal height condition for the associated primes of $I$) if there exists a prime ideal $\mathfrak{p}\in {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I$ for which $\mathrm{ht} (\mathfrak{p})$ equals the number of indeterminates that appear in the minimal set of monomials generating $I$. Let $I= { \mathop{\bigcap }\nolimits}_{i= 1}^{k} {Q}_{i} $ be the irreducible decomposition of $I$ and let $m(I)= \max \{ \vert Q_{i}\vert - \mathrm{ht} ({Q}_{i} ): 1\leq i\leq k\} $, where $\vert {Q}_{i} \vert $ denotes the total degree of ${Q}_{i} $. Then it can be seen that when $I$ is primary, $\mathrm{reg} (S/ I)= m(I)$. In this paper we improve this result and show that whenever $I$ is MHC, then $\mathrm{reg} (S/ I)= m(I)$ provided $\vert {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I\vert \leq 2$. We also prove that $m({I}^{n} )\leq n\max \{ \vert Q_{i}\vert : 1\leq i\leq ~k\} - \mathrm{ht} (I)$, for all $n\geq 1$. In addition we show that if $I$ is MHC and $w$ is an indeterminate which is not in the monomials generating $I$, then $\mathrm{reg} (S/ \mathop{(I+ {w}^{d} S)}\nolimits ^{n} )\leq \mathrm{reg} (S/ I)+ nd- 1$ for all $n\geq 1$ and $d$ large enough. Finally, we implement an algorithm for the computation of $m(I)$.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550025 ◽  
Author(s):  
Jens Harlander ◽  
Stephan Rosebrock

A word labeled oriented graph (WLOG) is an oriented graph [Formula: see text] on vertices X = {x1,…,xn}, where each oriented edge is labeled by a word in X±1. WLOGs give rise to presentations which generalize Wirtinger presentations of knots. WLOG presentations, where the underlying graph is a tree, are of central importance in view of Whitehead's Asphericity Conjecture. We present a class of aspherical word labeled oriented graphs. This class can be used to produce highly non-injective aspherical labeled oriented trees and also aspherical cyclically presented groups.


10.37236/9887 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Beata Casiday ◽  
Selvi Kara

Let $\mathcal{D}$ be a weighted oriented graph and $I(\mathcal{D})$ be its edge ideal. In this paper, we investigate the Betti numbers of $I(\mathcal{D})$ via upper-Koszul simplicial complexes, Betti splittings and the mapping cone construction. In particular, we provide recursive formulas for the Betti numbers of edge ideals of several classes of weighted oriented graphs. We also identify classes of weighted oriented graphs whose edge ideals have a unique extremal Betti number which allows us to compute the regularity and projective dimension for the identified classes. Furthermore, we characterize the structure of a weighted oriented graph $\mathcal{D}$ on $n$ vertices such that $\textrm{pdim } (R/I(\mathcal{D}))=n$ where $R=k[x_1,\ldots, x_n]$.


2021 ◽  
Vol 58 (3) ◽  
pp. 276-292
Author(s):  
Yuriko Pitones ◽  
Enrique Reyes ◽  
Rafael H. Villarreal

Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.


2005 ◽  
Vol 39 (3) ◽  
pp. 99-99 ◽  
Author(s):  
Shuhong Gao ◽  
Mingfu Zhu

2018 ◽  
Vol 55 (3) ◽  
pp. 345-352
Author(s):  
Tran Nguyen An

Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0R ⋉ M.


Sign in / Sign up

Export Citation Format

Share Document