scholarly journals Nonhomogeneous Parking Functions and Noncrossing Partitions

10.37236/870 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Drew Armstrong ◽  
Sen-Peng Eu

For each skew shape we define a nonhomogeneous symmetric function, generalizing a construction of Pak and Postnikov. In two special cases, we show that the coefficients of this function when expanded in the complete homogeneous basis are given in terms of the (reduced) type of $k$-divisible noncrossing partitions. Our work extends Haiman's notion of a parking function symmetric function.

10.37236/1335 ◽  
1996 ◽  
Vol 4 (2) ◽  
Author(s):  
Richard P. Stanley

A parking function is a sequence $(a_1,\dots,a_n)$ of positive integers such that, if $b_1\leq b_2\leq \cdots\leq b_n$ is the increasing rearrangement of the sequence $(a_1,\dots, a_n),$ then $b_i\leq i$. A noncrossing partition of the set $[n]=\{1,2,\dots,n\}$ is a partition $\pi$ of the set $[n]$ with the property that if $a < b < c < d$ and some block $B$ of $\pi$ contains both $a$ and $c$, while some block $B'$ of $\pi$ contains both $b$ and $d$, then $B=B'$. We establish some connections between parking functions and noncrossing partitions. A generating function for the flag $f$-vector of the lattice NC$_{n+1}$ of noncrossing partitions of $[{\scriptstyle n+1}]$ is shown to coincide (up to the involution $\omega$ on symmetric function) with Haiman's parking function symmetric function. We construct an edge labeling of NC$_{n+1}$ whose chain labels are the set of all parking functions of length $n$. This leads to a local action of the symmetric group ${S}_n$ on NC$_{n+1}$.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Emily Leven

International audience The Classical Shuffle Conjecture of Haglund et al. (2005) has a symmetric function side and a combinatorial side. The combinatorial side $q,t$-enumerates parking functions in the $n ×n$ lattice. The symmetric function side may be simply expressed as $∇ e_n$ , where $∇$ is the Macdonald eigen-operator introduced by Bergeron and Garsia (1999) and $e_n$ is the elementary symmetric function. The combinatorial side has been extended to parking functions in the $m ×n$ lattice for coprime $m,n$ by Hikita (2012). Recently, Gorsky and Negut have been able to extend the Shuffle Conjecture by combining their work (2012a, 2012b, 2013) (related to work of Schiffmann and Vasserot (2011, 2013)) with Hikita's combinatorial results. We prove this new conjecture for the cases $m=2$ and $n=2$ .


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Heesung Shin ◽  
Jiang Zeng

International audience For a fixed sequence of $n$ positive integers $(a,\bar{b}) := (a, b, b,\ldots, b)$, an $(a,\bar{b})$-parking function of length $n$ is a sequence $(p_1, p_2, \ldots, p_n)$ of positive integers whose nondecreasing rearrangement $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfies $q_i \leq a+(i-1)b$ for any $i=1,\ldots, n$. A $(a,\bar{b})$-forest on $n$-set is a rooted vertex-colored forests on $n$-set whose roots are colored with the colors $0, 1, \ldots, a-1$ and the other vertices are colored with the colors $0, 1, \ldots, b-1$. In this paper, we construct a bijection between $(bc,\bar{b})$-parking functions of length $n$ and $(bc,\bar{b})$-forests on $n$-set with some interesting properties. As applications, we obtain a generalization of Gessel and Seo's result about $(c,\bar{1})$-parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] and a refinement of Yan's identity [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] between an inversion enumerator for $(bc,\bar{b})$-forests and a complement enumerator for $(bc,\bar{b})$-parking functions. Soit $(a,\bar{b}) := (a, b, b,\ldots, b)$ une suite d'entiers positifs. Une $(a,\bar{b})$-fonction de parking est une suite $(p_1, p_2, \ldots, p_n)$ d'entiers positives telle que son réarrangement non décroissant $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfait $q_i \leq a+(i-1)b$ pour tout $i=1,\ldots, n$. Une $(a,\bar{b})$-forêt enracinée sur un $n$-ensemble est une forêt enracinée dont les racines sont colorées avec les couleurs $0, 1, \ldots, a-1$ et les autres sommets sont colorés avec les couleurs $0, 1, \ldots, b-1$. Dans cet article, on construit une bijection entre $(bc,\bar{b})$-fonctions de parking et $(bc,\bar{b})$-forêts avec des des propriétés intéressantes. Comme applications, on obtient une généralisation d'un résultat de Gessel-Seo sur $(c,\bar{1})$-fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] et une extension de l'identité de Yan [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] entre l'énumérateur d'inversion de $(bc,\bar{b})$-forêts et l'énumérateur complémentaire de $(bc,\bar{b})$-fonctions de parking.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.


10.37236/1668 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
P. Biane

The lattice of noncrossing partitions can be embedded into the Cayley graph of the symmetric group. This allows us to rederive connections between noncrossing partitions and parking functions. We use an analogous embedding for type B non-crossing partitions in order to answer a question raised by R. Stanley on the edge labeling of the type B non-crossing partitions lattice.


2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Hua Wang

AbstractIn this note we consider a discrete symmetric function f(x, y) where $$f(x,a) + f(y,b) \geqslant f(y,a) + f(x,b) for any x \geqslant y and a \geqslant b,$$ associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as $$\sum\limits_{uv \in E(T)} {f(deg(u),deg(v))} ,$$ are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures for the relatively new sum-connectivity index and harmonic index also follow immediately, some of these extremal structures have not been identified in previous studies.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Angela Hicks

International audience In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials $\nabla C_{p1}\dots C_{pk}1$ , where $p=(p_1,\ldots,p_k)$ is a composition, $\nabla$ is the Bergeron-Garsia Macdonald operator and the $C_\alpha$ are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly decade old ``Shuffle Conjecture,'' when combined with properties of the Hall-Littlewood operators can be shown to imply the existence of certain bijections between these families of parking functions. In previous work to appear in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple properties of a certain family of polynomials in one variable x with coefficients in $\mathbb{N}[q]$. In this paper we introduce those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of their surprising properties, both proven and conjectured. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes $\nabla C_{p1}\dots C_{pk}1$ où $p=(p_1,\ldots,p_k)$ est une composition, $\nabla$ est l’opérateur de Bergeron-Garsia et les $C_\alpha$ sont des opérateurs ``vertex'' de Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d'une famille de fonctions ``parking'', indexées par des compositions, par aire, le ``dinv'' et une fonction quasi-symétrique associée. Cette conjecture raffine la conjecture ``Shuffle'', qui est âgée de presque dix ans. On peut montrer, a partir de cette conjecture, que les propriétés des opérateurs de Hall-Littlewood, impliquent l'existence de certaines bijections entre ces familles de fonctions ``parking''. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l'auteur montre que l’existence de ces bijections découle de certaines propriétés relativement simples d'une famille de polynômes à une variable x, avec coefficients dans $\mathbb{N}[q]$. Dans cet article, on introduit ces polynômes, on explique leur connexion avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leurs propriétés surprenantes, qu'elles soient prouvées ou seulement conjecturées.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Yeonkyung Kim

International audience In this article, we show how the compositional refinement of the ``Shuffle Conjecture'' due to Jim Haglund, Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia Nabla operator as a weighted sum of a suitable collection of ``Parking Functions.'' The validity of these expressions is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.


10.37236/9874 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Chanchal Kumar ◽  
Gargi Lather ◽  
Sonica

 Let $G$ be a graph on the vertex set $V = \{ 0, 1,\ldots,n\}$ with root $0$. Postnikov and Shapiro were the first to consider a monomial ideal $\mathcal{M}_G$, called the $G$-parking function ideal, in the polynomial ring $ R = {\mathbb{K}}[x_1,\ldots,x_n]$ over a field $\mathbb{K}$ and explained its connection to the chip-firing game on graphs. The standard monomials of the Artinian quotient $\frac{R}{\mathcal{M}_G}$ correspond bijectively to $G$-parking functions. Dochtermann introduced and studied skeleton ideals of the graph $G$, which are subideals of the $G$-parking function ideal with an additional parameter $k ~(0\le k \le n-1)$. A $k$-skeleton ideal $\mathcal{M}_G^{(k)}$ of the graph $G$ is generated by monomials corresponding to non-empty subsets of the set of non-root vertices $[n]$ of size at most $k+1$. Dochtermann obtained many interesting homological and combinatorial properties of these skeleton ideals. In this paper, we study the $k$-skeleton ideals of graphs and for certain classes of graphs provide explicit formulas and combinatorial interpretation of standard monomials and the Betti numbers.


10.37236/5681 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Michelle Bodnar ◽  
Brendon Rhoades

Let $a < b$ be coprime positive integers. Armstrong, Rhoades, and Williams (2013) defined a set NC(a,b) of `rational noncrossing partitions', which form a subset of the ordinary noncrossing partitions of $\{1, 2, \dots, b-1\}$.  Confirming a conjecture of Armstrong et. al., we prove that NC(a,b) is closed under rotation and prove an instance of the cyclic sieving phenomenon for this rotational action.  We also define a rational generalization of the $\mathfrak{S}_a$-noncrossing parking functions of Armstrong, Reiner, and Rhoades.


Sign in / Sign up

Export Citation Format

Share Document