scholarly journals Saturation Number of Berge Stars in Random Hypergraphs

10.37236/9302 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Lele Liu ◽  
Changxiang He ◽  
Liying Kang

Let $G$ be a graph. We say an $r$-uniform hypergraph $H$ is a Berge-$G$ if there exists a bijection $\phi: E(G)\to E(H)$ such that $e\subseteq\phi(e)$ for each $e\in E(G)$. Given a family of $r$-uniform hypergraphs $\mathcal{F}$ and an $r$-uniform hypergraph $H$, a spanning sub-hypergraph $H'$ of $H$ is $\mathcal{F}$-saturated in $H$ if $H'$ is $\mathcal{F}$-free, but adding any edge in $E(H)\backslash E(H')$ to $H'$ creates a copy of some $F\in\mathcal{F}$. The saturation number of $\mathcal{F}$ is the minimum number of edges in an $\mathcal{F}$-saturated spanning sub-hypergraph of $H$. In this paper, we asymptotically determine the saturation number of Berge stars in random $r$-uniform hypergraphs.

2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


2017 ◽  
Vol 27 (4) ◽  
pp. 531-538 ◽  
Author(s):  
DWIGHT DUFFUS ◽  
BILL KAY ◽  
VOJTĚCH RÖDL

An oriented k-uniform hypergraph (a family of ordered k-sets) has the ordering property (or Property O) if, for every linear order of the vertex set, there is some edge oriented consistently with the linear order. We find bounds on the minimum number of edges in a hypergraph with Property O.


10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


10.37236/3222 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Vindya Bhat ◽  
Vojtěch Rödl

In 1964, Erdős proved that for any $\alpha > 0$, an $l$-uniform hypergraph $G$ with $n \geq n_0(\alpha, l)$ vertices and $\alpha \binom{n}{l}$ edges contains a large complete $l$-equipartite subgraph. This implies that any sufficiently large $G$ with density $\alpha > 0$ contains a large subgraph with density at least $l!/l^l$.In this note we study a similar problem for $l$-uniform hypergraphs $Q$ with a weak quasi-random property (i.e. with edges uniformly distributed over the sufficiently large subsets of vertices). We prove that any sufficiently large quasi-random $l$-uniform hypergraph $Q$ with density $\alpha > 0$ contains a large subgraph with density at least $\frac{(l-1)!}{l^{l-1}-1}$. In particular, for $l=3$, any sufficiently large such $Q$ contains a large subgraph with density at least $\frac{1}{4}$ which is the best possible lower bound.We define jumps for quasi-random sequences of $l$-graphs and our result implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasi-random $l$-graphs. For $l=3$ this interval can be improved based on a recent result of Glebov, Král' and Volec. We prove that every number between [0, 0.3192) is a jump for quasi-random $3$-graphs.


10.37236/7712 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider connected components in $k$-uniform hypergraphs for the following notion of connectedness: given integers $k\ge 2$ and $1\le j \le k-1$, two $j$-sets (of vertices) lie in the same $j$-component if there is a sequence of edges from one to the other such that consecutive edges intersect in at least $j$ vertices.We prove that certain collections of $j$-sets constructed during a breadth-first search process on $j$-components in a random $k$-uniform hypergraph are reasonably regularly distributed with high probability. We use this property to provide a short proof of the asymptotic size of the giant $j$-component shortly after it appears.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


10.37236/5304 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

Let $H$ be a $4$-uniform hypergraph on $n$ vertices. The transversal number $\tau(H)$ of $H$ is the minimum number of vertices that intersect every edge. The result in [J. Combin. Theory Ser. B 50 (1990), 129—133] by Lai and Chang implies that $\tau(H) \le 7n/18$ when $H$ is $3$-regular. The main result in [Combinatorica 27 (2007), 473—487] by Thomassé and Yeo implies an improved bound of $\tau(H) \le 8n/21$. We provide a further improvement and prove that $\tau(H) \le 3n/8$, which is best possible due to a hypergraph of order eight. More generally, we show that if $H$ is a $4$-uniform hypergraph on $n$ vertices and $m$ edges with maximum degree $\Delta(H) \le 3$, then $\tau(H) \le n/4 + m/6$, which proves a known conjecture. We show that an easy corollary of our main result is that if $H$ is a $4$-uniform hypergraph with $n$ vertices and $n$ edges, then $\tau(H) \le \frac{3}{7}n$, which was the main result of the Thomassé-Yeo paper [Combinatorica 27 (2007), 473—487].


10.37236/8363 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Bethany Austhof ◽  
Sean English

Given a graph $G$, we say a $k$-uniform hypergraph $H$ on the same vertex set contains a Berge-$G$ if there exists an injection $\phi:E(G)\to E(H)$ such that $e\subseteq\phi(e)$ for each edge $e\in E(G)$. A hypergraph $H$ is Berge-$G$-saturated if $H$ does not contain a Berge-$G$, but adding any edge to $H$ creates a Berge-$G$. The saturation number for Berge-$G$, denoted $\mathrm{sat}_k(n,\text{Berge-}G)$ is the least number of edges in a $k$-uniform hypergraph that is Berge-$G$-saturated. We determine exactly the value of the saturation numbers for Berge stars. As a tool for our main result, we also prove the existence of nearly-regular $k$-uniform hypergraphs, or $k$-uniform hypergraphs in which every vertex has degree $r$ or $r-1$ for some $r\in \mathbb{Z}$, and less than $k$ vertices have degree $r-1$. 


2014 ◽  
Vol 672-674 ◽  
pp. 1935-1939
Author(s):  
Guan Ru Li ◽  
Yi Ming Lei ◽  
Jirimutu

About the Katona-Kierstead definition of a Hamiltonian cycles in a uniform hypergraph, a decomposition of complete k-uniform hypergraph Kn(k) into Hamiltonian cycles studied by Bailey-Stevens and Meszka-Rosa. For n≡2,4,5 (mod 6), we design algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of Kn(3) into 5-cycles has been presented for all admissible n≤17, and for all n=4m +1, m is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we use the method of edge-partition and cycle sequence proposed by Jirimutu and Wang. We find a decomposition of K20(3) into 5-cycles.


Sign in / Sign up

Export Citation Format

Share Document