scholarly journals The Unit Acquisition Number of Binomial Random Graphs

10.37236/9671 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Konstantinos Georgiou ◽  
Somnath Kundu ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the unit weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The unit acquisition number of $G$, denoted by $a_u(G)$, is the minimum cardinality of the set of vertices with positive weight at the end of the process (over all acquisition protocols). In this paper, we investigate the Erdős-Rényi random graph process $(\mathcal{G}(n,m))_{m =0}^{N}$, where $N = {n \choose 2}$. We show that asymptotically almost surely $a_u(\mathcal{G}(n,m)) = 1$ right at the time step the random graph process creates a connected graph. Since trivially $a_u(\mathcal{G}(n,m)) \ge 2$ if the graphs is disconnected, the result holds in the strongest possible sense.

10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


2014 ◽  
Vol 23 (4) ◽  
pp. 477-504
Author(s):  
LOUIGI ADDARIO-BERRY ◽  
SVANTE JANSON ◽  
COLIN McDIARMID

The spread of a connected graph G was introduced by Alon, Boppana and Spencer [1], and measures how tightly connected the graph is. It is defined as the maximum over all Lipschitz functions f on V(G) of the variance of f(X) when X is uniformly distributed on V(G). We investigate the spread for certain models of sparse random graph, in particular for random regular graphs G(n,d), for Erdős–Rényi random graphs Gn,p in the supercritical range p>1/n, and for a ‘small world’ model. For supercritical Gn,p, we show that if p=c/n with c>1 fixed, then with high probability the spread of the giant component is bounded, and we prove corresponding statements for other models of random graphs, including a model with random edge lengths. We also give lower bounds on the spread for the barely supercritical case when p=(1+o(1))/n. Further, we show that for d large, with high probability the spread of G(n,d) becomes arbitrarily close to that of the complete graph $\mathsf{K}_n$.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Yilun Shang

AbstractIn this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph $$K_n$$ K n independently with probability $$p_n(e)$$ p n ( e ) . Each vertex is independently assigned an initial state $$+1$$ + 1 (with probability $$p_+$$ p + ) or $$-1$$ - 1 (with probability $$1-p_+$$ 1 - p + ), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if $$p_+$$ p + is smaller than a threshold, then G will display a unanimous state $$-1$$ - 1 asymptotically almost surely, meaning that the probability of reaching consensus tends to one as $$n\rightarrow \infty $$ n → ∞ . The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph $$p_+$$ p + can be near a half, while in a sparse random graph $$p_+$$ p + has to be vanishing. The size of a dynamic monopoly in G is also discussed.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


10.37236/2596 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Colin McDiarmid

There has been much recent interest in random graphs sampled uniformly from the $n$-vertex graphs in a suitable structured class, such as the class of all planar graphs. Here we consider a general bridge-addable class $\cal A$ of graphs -- if a graph is in $\cal A$ and $u$ and $v$ are vertices in different components   then the graph obtained by adding an edge (bridge) between $u$ and $v$ must also be in $\cal A$. Various bounds are known concerning the probability of a random graph from such a   class being connected or having many components, sometimes under the additional assumption that bridges can be deleted as well as added. Here we improve or amplify or generalise these bounds (though we do not resolve the main conjecture). For example, we see that the expected number of vertices left when we remove a largest component is less than 2. The generalisation is to consider `weighted' random graphs, sampled from a suitable more general distribution, where the focus is on the bridges.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


Author(s):  
G. R. Grimmett ◽  
C. J. H. McDiarmid

AbstractLet ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,


2021 ◽  
Vol 30 (4) ◽  
pp. 525-537
Author(s):  
András Faragó ◽  

Random graphs are frequently used models of real-life random networks. The classical Erdös–Rényi random graph model is very well explored and has numerous nontrivial properties. In particular, a good number of important graph parameters that are hard to compute in the deterministic case often become much easier in random graphs. However, a fundamental restriction in the Erdös–Rényi random graph is that the edges are required to be probabilistically independent. This is a severe restriction, which does not hold in most real-life networks. We consider more general random graphs in which the edges may be dependent. Specifically, two models are analyzed. The first one is called a p-robust random graph. It is defined by the requirement that each edge exist with probability at least p, no matter how we condition on the presence/absence of other edges. It is significantly more general than assuming independent edges existing with probability p, as exemplified via several special cases. The second model considers the case when the edges are positively correlated, which means that the edge probability is at least p for each edge, no matter how we condition on the presence of other edges (but absence is not considered). We prove some interesting, nontrivial properties about both models.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 267 ◽  
Author(s):  
Yilun Shang

The super connectivity κ ′ ( G ) of a graph G is the minimum cardinality of vertices, if any, whose deletion results in a disconnected graph that contains no isolated vertex. G is said to be r-super connected if κ ′ ( G ) ≥ r . In this note, we establish some asymptotic almost sure results on r-super connectedness for classical Erdős–Rényi random graphs as the number of nodes tends to infinity. The known results for r-connectedness are extended to r-super connectedness by pairing off vertices and estimating the probability of disconnecting the graph that one gets by identifying the two vertices of each pair.


Sign in / Sign up

Export Citation Format

Share Document