cDNA-AFLP Analysis Reveals Differential Gene Expression in Wheat Adult- Plant Resistance to Stripe Rust

2010 ◽  
Vol 36 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Gang ZHANG ◽  
Yan-Ling DONG ◽  
Ning XIA ◽  
Yi ZHANG ◽  
Xiao-Jie WANG ◽  
...  
Plant Disease ◽  
2020 ◽  
Author(s):  
Yu Wu ◽  
Yuqi Wang ◽  
Fangjie Yao ◽  
Li Long ◽  
Jing Li ◽  
...  

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Chinese wheat landrace ‘Guangtoumai’ (GTM) exhibited a high-level resistance against predominant Pst races in China at the adult-plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S (AvS). The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant Pst races for final disease severity (FDS) and genotyped with the Wheat 55K SNP array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75 cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance (APR) locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this QTL will provide new and possibly durable resistance to stripe rust.


2014 ◽  
Vol 127 (6) ◽  
pp. 1449-1459 ◽  
Author(s):  
Yan Lu ◽  
Meinan Wang ◽  
Xianming Chen ◽  
Deven See ◽  
Shiaoman Chao ◽  
...  

2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2012 ◽  
Vol 11 (11) ◽  
pp. 1775-1782 ◽  
Author(s):  
Ling WU ◽  
Xian-chun XIA ◽  
You-liang ZHENG ◽  
Zheng-yu ZHANG ◽  
Hua-zhong ZHU ◽  
...  

2011 ◽  
Vol 123 (8) ◽  
pp. 1401-1411 ◽  
Author(s):  
Yuanfeng Hao ◽  
Zhenbang Chen ◽  
Yingying Wang ◽  
Dan Bland ◽  
James Buck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document