Genetic Diversity of ALK Gene and Its Association with Grain Gelatinization Temperature in Currently Cultivated Rice Landraces from Hani's Terraced Fields in Yunnan Province

2017 ◽  
Vol 43 (3) ◽  
pp. 343
Author(s):  
Chuang LI ◽  
Cheng-Chen LIU ◽  
Chang-Quan ZHANG ◽  
Ji-Hui ZHU ◽  
Xiao-Ying XU ◽  
...  
2020 ◽  
Author(s):  
Janet Higgins ◽  
Bruno Santos ◽  
Tran Dang Khanh ◽  
Khuat Huu Trung ◽  
Tran Duy Duong ◽  
...  

AbstractVietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns.We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3,000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had with very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. We identified genomic regions selected in both Indica and Japonica subtypes during the breeding of these subpopulations within Vietnam and discuss in detail fifty-two selected regions in I5, which constitute an untapped resource of cultivated rice diversity.Our results highlight traits and their associated genomic regions, which were identified by fine phenotyping and data integration. These are a potential source of novel loci and alleles to breed a new generation of sustainable and resilient rice.


2020 ◽  
Author(s):  
Janet Higgins ◽  
Bruno Santos ◽  
Tran Dang Khanh ◽  
Khuat Huu Trung ◽  
Tran Duy Duong ◽  
...  

Abstract BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3,000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had with very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of sustainable and resilient rice.


2018 ◽  
Author(s):  
Xiaomei Zhou ◽  
Yun Zheng ◽  
Tingting Zhang ◽  
Xiaoqian Zhang ◽  
Mengli Ma ◽  
...  

Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Hongliang Zhang ◽  
Junli Sun ◽  
Meixing Wang ◽  
Dengqun Liao ◽  
Yawen Zeng ◽  
...  

Yunnan Province is one of the largest centers of genetic diversity of Oryza sativa L. in China, and in the world. Using a genetically representative core collection of 692 rice landraces from Yunnan, the genetic structure, differentiation, and geographic diversity of this rice germplasm were analyzed. The accessions were classified into different populations, according to the model-based structure analysis. Model-based populations were characterized through the reconstruction of a neighbor-joining tree, principal coordinate analysis, and the estimation of morphologic and SSR variations. Finally, the distribution of genetic diversity and differentiation among districts were studied. Seven model-based populations were identified on the basis of the structure analysis. This classification was partly consistent with Ting’s 5-level taxonomic system. Differentiation between 2 rice subspecies is the most apparent, with a clearer differentiation between soil-watery ecotypes in japonica than in indica; however, differentiation among seasonal ecotypes in indica is clearer than in japonica. Cropping system and man-made restricted-growth environments could be considered to be the main forces driving the intraspecific differentiation of cultivated rice. It has been suggested that, because it possesses the highest genetic diversity and all the necessary conditions as a center of genetic diversity, the southwest region of Yunnan, encompassing Simao, Lincang, and Xishuangbanna districts, is the center of genetic diversity of Yunnan rice landraces.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Janet Higgins ◽  
Bruno Santos ◽  
Tran Dang Khanh ◽  
Khuat Huu Trung ◽  
Tran Duy Duong ◽  
...  

Abstract Background Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. Results We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. Conclusions We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.


2009 ◽  
Vol 90 (4) ◽  
pp. 1025-1034 ◽  
Author(s):  
Tai-Yun Wei ◽  
Jin-Guang Yang ◽  
Fu-Long Liao ◽  
Fang-Luan Gao ◽  
Lian-Ming Lu ◽  
...  

Rice stripe virus (RSV) is one of the most economically important pathogens of rice and is repeatedly epidemic in China, Japan and Korea. The most recent outbreak of RSV in eastern China in 2000 caused significant losses and raised serious concerns. In this paper, we provide a genotyping profile of RSV field isolates and describe the population structure of RSV in China, based on the nucleotide sequences of isolates collected from different geographical regions during 1997–2004. RSV isolates could be divided into two or three subtypes, depending on which gene was analysed. The genetic distances between subtypes range from 0.050 to 0.067. The population from eastern China is composed only of subtype I/IB isolates. In contrast, the population from Yunnan province (southwest China) is composed mainly of subtype II isolates, but also contains a small proportion of subtype I/IB isolates and subtype IA isolates. However, subpopulations collected from different districts in eastern China or Yunnan province are not genetically differentiated and show frequent gene flow. RSV genes were found to be under strong negative selection. Our data suggest that the most recent outbreak of RSV in eastern China was not due to the invasion of new RSV subtype(s). The evolutionary processes contributing to the observed genetic diversity and population structure are discussed.


Author(s):  
Caimei Zhao ◽  
Fuyou Yin ◽  
Ling Chen ◽  
Dingqin Li ◽  
Suqin Xiao ◽  
...  

AbstractBacterial blight (BB), a serious bacterial disease caused by pathogen Xanthomonas oryzae pv. oryzae (Xoo) affects rice growth and yield. Yunnan Province is regarded as a center of rice diversity in China and indeed the world, and has abundant rice landrace resources, which may offer prospective candidate donors in rice improvement and breeding. In this study, a set of 200 rice landraces were evaluated to determine their resistance to 10 pathogenic Xoo strains resistance by the leaf-clipping method. The results indicated that the tested rice landraces had different resistance levels against different Xoo strains. Multiple comparisons showed that the Xoo strain PXO99 was virulent to the tested rice landraces. Sixty-six rice landraces conferred resistance against at least one Xoo strain. These resistant rice landraces screened were then performed the presence of 14 cloned BB resistance genes by closely linked molecular markers and designed specific primers. The results showed that none of these resistant accessions contained xa13, Xa21, Xa27, and Xa45(t) homologous fragments, while 9, 24, 4, 7, 9, 15, 1, 5, 4 and 27 accessions contained Xa1, Xa2/Xa31(t), Xa14, Xa3/Xa26, Xa4, xa5, Xa7, Xa10, Xa23 and xa25 homologous fragments, respectively. Sequence analysis further revealed that nucleotide variations around functional nucleotide polymorphisms region were observed within these accessions containing the Xa1, Xa2/Xa31(t), Xa14, Xa3/Xa26, Xa4, xa5, Xa10, Xa23 and xa25 homologous fragments. These results along with phenotypic resistance spectrum supported that these accessions carried nine resistance homologous genes. Only one accession (Qishanggu_Wenshan) carried the Xa7 resistance gene. We also found that some resistant rice landraces, especially Xilandigu_Baoshan, and Laoyaling_Lincang without the above resistance genes, which mediated broad spectrum resistance to multiple Xoo strains, were identified as potential sources for breeding rice lines resistance to BB.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tian-Qi Shi ◽  
Hai-Mo Shen ◽  
Shen-Bo Chen ◽  
Kokouvi Kassegne ◽  
Yan-Bing Cui ◽  
...  

Malaria incidence has declined dramatically over the past decade and China was certified malaria-free in 2021. However, the presence of malaria in border areas and the importation of cases of malaria parasites are major challenges for the consolidation of the achievements made by China. Plasmodium vivax Duffy binding protein (PvDBP) performs a significant role in erythrocyte invasion, and is considered a promising P. vivax vaccine. However, the highly polymorphic region of PvDBP (PvDBP-II) impedes the development of blood-stage vaccine against P. vivax. In this study, we investigated the genetic diversity and natural selection of PvDBP-II among 124 P. vivax isolates collected from the China-Myanmar border (CMB) in Yunnan Province, China, during 2009–2011. To compare genetic diversity, natural selection, and population structure with CMB isolates, 85 pvdbp-II sequences of eastern Myanmar isolates were obtained from GenBank. In addition, global sequences of pvdbp-II were retrieved from GenBank to establish genetic differentiation relationships and networks with the CMB isolates. In total, 22 single nucleotide polymorphisms reflected in 20 non-synonymous and two synonymous mutations were identified. The overall nucleotide diversity of PvDBP-II from the 124 CMB isolates was 0.0059 with 21 haplotypes identified (Hd = 0.91). The high ratio of non-synonymous to synonymous mutations suggests that PvDBP-II had evolved under positive selection. Population structure analysis of the CMB and eastern Myanmar isolates were optimally grouped into five sub-populations (K = 5). Polymorphisms of PvDBP-II display that CMB isolates were genetically diverse. Mutation, recombination, and positive selection promote polymorphism of PvDBP-II of P. vivax population. Although low-level genetic differentiation in eastern Myanmar was identified along with the more effective malaria control measures, the complexity of population structure in malaria parasites has maintained. In conclusion, findings from this study advance knowledge of the understanding of the dynamic of P. vivax population, which will contribute to guiding the rational design of a PvDBP-II based vaccine.


2021 ◽  
pp. 36-48
Author(s):  
Farhana Afrin Vabna ◽  
Mohammad Zahidul Islam ◽  
Md. Ferdous Rezwan Khan Prince ◽  
Md. Ekramul Hoque

Aims: The aim of the study was to determine the genetic diversity of twenty four Boro rice landraces using rice genome specific twelve well known SSR markers. Study Design: Genomic DNA extraction, PCR amplification, Polyacrylamide gel electrophoresis (PAGE) and data analysis-these steps were followed to perform the research work. Data was analysed with the help of following software; POWERMAKER version 3.25, AlphaEaseFC (Alpha Innotech Corporation) version 4.0. UPGMA dendrogram was constructed using MEGA 5.1 software. Place and Duration of Study: The study was conducted at the Genetic Resources and Seed Division (GRSD), Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur, Bangladesh during the period of November 2017 to March 2018. Methodology: Simple Sequence Repeat (SSR) markers were used to assay 24 landraces of Boro rice collected from the Gene Bank of Bangladesh Rice Research Institute (BRRI). Results: A total fifty four (54) alleles were detected, out of which forty five (45) polymorphic alleles were identified. The Polymorphic Information Content (PIC) of SSR markers ranged from 0.08 (RM447) to 0.84 (RM206) with an average value of PIC = 0.49. Gene diversity ranges from 0.08 (RM447) to 0.86 (RM206) with an average value of 0.52. The RM206 marker can be considered as the best marker among the studied markers for 24 rice landraces. Dendrogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Mean (UPGMA) indicated the segregation of 24 genotypes into three main clusters. Conclusion: The result revealed that SSR markers are very effective tools in the study of genetic diversity and genetic relationships and this result can be conveniently used for further molecular diversity analysis of rice genotypes to identify diverse parent for the development of high yielding variety in rice.


Sign in / Sign up

Export Citation Format

Share Document