Using DNDC model to simulate and predict changes in black soil organic carbon

2014 ◽  
Vol 22 (3) ◽  
pp. 277-283
Author(s):  
Deying WANG ◽  
Yanmin YAO ◽  
Haiqing SI ◽  
Pengqin TANG
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 484
Author(s):  
Andrew M. Bierer ◽  
April B. Leytem ◽  
Robert S. Dungan ◽  
Amber D. Moore ◽  
David L. Bjorneberg

Insufficient characterization of soil organic carbon (SOC) dynamics in semi-arid climates contributes uncertainty to SOC sequestration estimates. This study estimated changes in SOC (0–30 cm depth) due to variations in manure management, tillage regime, winter cover crop, and crop rotation in southern Idaho (USA). Empirical data were used to drive the Denitrification Decomposition (DNDC) model in a “default” and calibrated capacity and forecast SOC levels until 2050. Empirical data indicates: (i) no effect (p = 0.51) of winter triticale on SOC after 3 years; (ii) SOC accumulation (0.6 ± 0.5 Mg ha–1 year–1) under a rotation of corn-barley-alfalfax3 and no change (p = 0.905) in a rotation of wheat-potato-barley-sugarbeet; (iii) manure applied annually at rate 1X is not significantly different (p = 0.75) from biennial application at rate 2X; and (iv) no significant effect of manure application timing (p = 0.41, fall vs. spring). The DNDC model simulated empirical SOC and biomass C measurements adequately in a default capacity, yet specific issues were encountered. By 2050, model forecasting suggested: (i) triticale cover resulted in SOC accrual (0.05–0.27 Mg ha–1 year–1); (ii) when manure is applied, conventional tillage regimes are favored; and (iii) manure applied treatments accrue SOC suggesting a quadratic relationship (all R2 > 0.85 and all p < 0.0001), yet saturation behavior was not realized when extending the simulation to 2100. It is possible that under very large C inputs that C sequestration is favored by DNDC which may influence “NetZero” C initiatives.


Geoderma ◽  
2006 ◽  
Vol 134 (1-2) ◽  
pp. 200-206 ◽  
Author(s):  
Huajun Tang ◽  
Jianjun Qiu ◽  
Eric Van Ranst ◽  
Changsheng Li

2018 ◽  
Vol 64 (No. 11) ◽  
pp. 557-563 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Yingxue Li ◽  
Xin Zhong

Monoculture is common to meet commodity grain requirements in Northeast China. The effect of long-term monoculture on chemical composition of soil organic carbon (SOC) remains unclear. This study was done to evaluate how changes in chemical compositions of SOC responded to long-term monoculture. To achieve this objective, the chemical compositions of SOC in maize-soybean rotation, continuous soybean and continuous maize were characterized with the nuclear magnetic resonance technique. Two main components, O-alkyl and aromatic C, showed a wider range of relative proportion in monoculture than rotation system across soil profiles, but no difference was observed between two monoculture systems. Pearson’s analysis showed a significant relationship between plant-C and OCH<sub>3</sub>/NCH, alkyl C or alkyl O-C-O, and the A/O-A was closely related to plant-C. The findings indicated a greater influence of monoculture on the chemical composition of SOC compared to rotation, but lower response to crop species.


2013 ◽  
Vol 1 (2) ◽  
pp. 118
Author(s):  
B. Telpande ◽  
T. Bhattacharyya ◽  
D.M. Wankhede ◽  
P. Jha ◽  
P. Tiwary ◽  
...  

Author(s):  
Viktoriia Hetmanenko ◽  
Ievgen Skrylnyk ◽  
Anzhela Kutova

&lt;p&gt;Soil organic carbon management is a key element in solving such urgent global-scale challenges as overcoming degradation of soils and mitigating climate change. Organic fertilizers application has a significant potential for sequestering C in soils, but their efficiency depends on decomposition characteristics. Firstly, it noted the dependence of resynthesis of humic compounds in a soil on a quality of organic inputs, secondly - a need for zonal approach to fertilizers production based on amphiphile properties of macromolecules.&lt;/p&gt;&lt;p&gt;The present study was conducted in long-term field experiment on black soil in Forrest-Steppe zone of Ukraine. The technology of production of organo-mineral fertilizers (OMFs) was based on the regulated processing of livestock waste with mineral components to stabilize it with hydrophobic bonds. OMFs in amorphous and granular form were compared in case of broadcast and band method of incorporation. The dose of OMF input was equivalent 350 C kg ha&lt;sup&gt;-1&lt;/sup&gt; and 80 N, 80 P, 80 K kg ha&lt;sup&gt;-1&lt;/sup&gt;. Organic carbon content in soil was determined by Turin method. Different organic matter fractions were isolated: humic acids (HA), fulvic acids (FA), and humin.&lt;/p&gt;&lt;p&gt;The soil C accumulation rates in OMF treatment was by 15 % higher than in manure treatment and up to 70 % higher than in chemical fertilizer treatment, respectively. The soil C accumulation was strongly influenced by the form of OMF and method of their application. The highest TOC level was found over band application of amorphous OMF, accumulating 6.2 t C ha&lt;sup&gt;&amp;#8211;1&lt;/sup&gt; yr&lt;sup&gt;&amp;#8211;1 &lt;/sup&gt;in 0-20 cm soil layer. Lower efficiency of broadcast incorporation OMFs could be explained by more intensive mineralization due to higher aeration. Taking into account the effect of OMFs on C stock an advantage of amorphous form versus granulated OMF with similar composition was proven. Black soil on control plot (without fertilization) had almost equal ratio between HA, FA and humin in humus composition. The content of humic compound increased in all treatments. Applying OMF significantly increased HA content in black soil compared to applying mineral fertilizer. OMFs application promoted the increase of the degree of condensation of organic matter. The highest HA/FA was found under the effect of broadcast incorporation OMF. That means that low molecular weight compounds were rapidly degraded while more resistant to mineralization HA were formed in soil. There was no significant difference in humus composition between amorphous and granulated OMF.&lt;/p&gt;


Geoderma ◽  
1997 ◽  
Vol 81 (1-2) ◽  
pp. 45-60 ◽  
Author(s):  
Changsheng Li ◽  
Steve Frolking ◽  
Graham J. Crocker ◽  
Peter R. Grace ◽  
Jan Klír ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document