scholarly journals Soil Organic Carbon Dynamics in Semi-Arid Irrigated Cropping Systems

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 484
Author(s):  
Andrew M. Bierer ◽  
April B. Leytem ◽  
Robert S. Dungan ◽  
Amber D. Moore ◽  
David L. Bjorneberg

Insufficient characterization of soil organic carbon (SOC) dynamics in semi-arid climates contributes uncertainty to SOC sequestration estimates. This study estimated changes in SOC (0–30 cm depth) due to variations in manure management, tillage regime, winter cover crop, and crop rotation in southern Idaho (USA). Empirical data were used to drive the Denitrification Decomposition (DNDC) model in a “default” and calibrated capacity and forecast SOC levels until 2050. Empirical data indicates: (i) no effect (p = 0.51) of winter triticale on SOC after 3 years; (ii) SOC accumulation (0.6 ± 0.5 Mg ha–1 year–1) under a rotation of corn-barley-alfalfax3 and no change (p = 0.905) in a rotation of wheat-potato-barley-sugarbeet; (iii) manure applied annually at rate 1X is not significantly different (p = 0.75) from biennial application at rate 2X; and (iv) no significant effect of manure application timing (p = 0.41, fall vs. spring). The DNDC model simulated empirical SOC and biomass C measurements adequately in a default capacity, yet specific issues were encountered. By 2050, model forecasting suggested: (i) triticale cover resulted in SOC accrual (0.05–0.27 Mg ha–1 year–1); (ii) when manure is applied, conventional tillage regimes are favored; and (iii) manure applied treatments accrue SOC suggesting a quadratic relationship (all R2 > 0.85 and all p < 0.0001), yet saturation behavior was not realized when extending the simulation to 2100. It is possible that under very large C inputs that C sequestration is favored by DNDC which may influence “NetZero” C initiatives.

2020 ◽  
Author(s):  
Yan Zhang

&lt;p&gt;Improvements in management practices can prevent the decline of soil organic carbon (SOC) storage caused by conventional tillage&amp;#160;practice in Northeast China. Density and size fractionation can track the transformation of plant residue into SOC and its location&amp;#160;in soil matrix. We used a long-term field study&amp;#160;in China&amp;#160;to evaluate these changes as a result of improved management involving tillage and cropping systems. Experimental treatments included no-till&amp;#160;(NT)&amp;#160;and moldboard ploughing&amp;#160;(MP)&amp;#160;under monoculture maize&amp;#160;(Zea mays&amp;#160;L.) (MM) and maize-soybean (Glycine max Merr.) rotation (MS); these were compared to the traditional management involving conventional tillage&amp;#160;(CT)&amp;#160;under MM. An&amp;#160;incubation&amp;#160;study&amp;#160;was conducted to evaluate mineralization and the biodegradability of SOC. The soils were also physically fractionated by density (light fraction, LF) and size (sand, silt, clay). With improved management, the SOC storage&amp;#160;in the clay&amp;#160;showed the largest increase across&amp;#160;all fractions. This increase was greater for MS than MM. The NTMS treatment resulted in a decline in silt-OC storage compared to CTMM. The&amp;#160;SOC mineralization&amp;#160;(mg CO&lt;sub&gt;2&lt;/sub&gt;-C g&lt;sup&gt;-1&lt;/sup&gt;&amp;#160;soil)&amp;#160;was affected by tillage and driven by LF-OC&amp;#160;and was observed in the order: NTMM&amp;#160;(2.06) &gt; MPMM&amp;#160;(1.72) &amp;#8776;&amp;#160;NTMS (1.71)&amp;#160;&gt;&amp;#160;CTMM (1.52) &amp;#8776;&amp;#160;MPMS (1.41). Both cropping and depth affected the biodegradability of SOC. Considering the plough layer (0-20 cm), treatments under MM had larger proportion of biodegradable SOC than under MS.&amp;#160;We conclude that the significant differences in SOC storage in physical fractions and SOC biodegradation were caused by differences in soil management.&lt;/p&gt;


Agriculture ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 261
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the last few decades, various crop diversification strategies and management practices have been promoted to improve or at least maintain environmental quality and agroecosystem services. We conducted a data-analysis to evaluate the effectiveness of alternatives for crop diversification and environmentally friendly farming management for arable crops in four selected European pedoclimatic regions and typical cropping systems in the Atlantic, Boreal, Mediterranean North, and Mediterranean South regions. The dataset was retrieved from 38 references and included data on site-specific environmental conditions, soil tillage, crop rotation, fertilization, and final soil organic carbon content (SOC). No tillage (NT) was more effective (7%) in increasing SOC content than minimum tillage (MT) across the studied depths (from 5 to 40 cm). Conservation tillage as whole, including NT, MT, and rotational tillage (RT) positively affected SOC content in the top 10 cm (28%) in comparison with conventional tillage (CT). Compared to monoculture, longer crop rotations (3–5 years) and the introduction of legumes resulted in higher increases in SOC contents (18%), that were higher in semiarid conditions (11%) than under humid and sub-humid climates (3.2%). The effect of fertilization on SOC contents was higher in the Mediterranean North region (28%), and organic fertilization showed the highest increases (25%) compared to the control with mineral fertilization. Higher increases in SOC contents with tillage and fertilization management were found in sites with lower SOC contents in the control treatment (conventional tillage and mineral fertilization respectively). The data analysis indicated that various European arable agroecosystems benefit both from diversified cropping systems and the adoption of environmentally friendly farming management and are thereby capable to increase SOC contents.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

Geoderma ◽  
2006 ◽  
Vol 134 (1-2) ◽  
pp. 200-206 ◽  
Author(s):  
Huajun Tang ◽  
Jianjun Qiu ◽  
Eric Van Ranst ◽  
Changsheng Li

2010 ◽  
Vol 89 (3) ◽  
pp. 375-385 ◽  
Author(s):  
Satoshi Nakamura ◽  
Keiichi Hayashi ◽  
Hide Omae ◽  
Tabo Ramadjita ◽  
Fatondji Dougbedji ◽  
...  

2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


Sign in / Sign up

Export Citation Format

Share Document