Soil Organic Carbon Accumulation under Different Forms of Organo-Mineral Fertilizers and Methods of Their Application on Ukrainian Black Soil

Author(s):  
Viktoriia Hetmanenko ◽  
Ievgen Skrylnyk ◽  
Anzhela Kutova

<p>Soil organic carbon management is a key element in solving such urgent global-scale challenges as overcoming degradation of soils and mitigating climate change. Organic fertilizers application has a significant potential for sequestering C in soils, but their efficiency depends on decomposition characteristics. Firstly, it noted the dependence of resynthesis of humic compounds in a soil on a quality of organic inputs, secondly - a need for zonal approach to fertilizers production based on amphiphile properties of macromolecules.</p><p>The present study was conducted in long-term field experiment on black soil in Forrest-Steppe zone of Ukraine. The technology of production of organo-mineral fertilizers (OMFs) was based on the regulated processing of livestock waste with mineral components to stabilize it with hydrophobic bonds. OMFs in amorphous and granular form were compared in case of broadcast and band method of incorporation. The dose of OMF input was equivalent 350 C kg ha<sup>-1</sup> and 80 N, 80 P, 80 K kg ha<sup>-1</sup>. Organic carbon content in soil was determined by Turin method. Different organic matter fractions were isolated: humic acids (HA), fulvic acids (FA), and humin.</p><p>The soil C accumulation rates in OMF treatment was by 15 % higher than in manure treatment and up to 70 % higher than in chemical fertilizer treatment, respectively. The soil C accumulation was strongly influenced by the form of OMF and method of their application. The highest TOC level was found over band application of amorphous OMF, accumulating 6.2 t C ha<sup>–1</sup> yr<sup>–1 </sup>in 0-20 cm soil layer. Lower efficiency of broadcast incorporation OMFs could be explained by more intensive mineralization due to higher aeration. Taking into account the effect of OMFs on C stock an advantage of amorphous form versus granulated OMF with similar composition was proven. Black soil on control plot (without fertilization) had almost equal ratio between HA, FA and humin in humus composition. The content of humic compound increased in all treatments. Applying OMF significantly increased HA content in black soil compared to applying mineral fertilizer. OMFs application promoted the increase of the degree of condensation of organic matter. The highest HA/FA was found under the effect of broadcast incorporation OMF. That means that low molecular weight compounds were rapidly degraded while more resistant to mineralization HA were formed in soil. There was no significant difference in humus composition between amorphous and granulated OMF.</p>

2014 ◽  
Vol 4 ◽  
Author(s):  
Jose Navarro Pedreño ◽  
Ignacio Gómez Lucas ◽  
Jose Martín Soriano Disla

The mineralisation of organic matter (OM) when sewage sludge was used as amendment in 70 contrasting agricultural soils from Spain was analysed. Soils received a single dose of sewage sludge (equivalent to 50t dry weight ha<sup>-1</sup>) and the O<sub>2</sub> consumption was continuously monitored for 30 days using a multiple sensor respirometer in a laboratory experiment. The cumulative O<sub>2</sub> consumption and rates after 8 and 30 days of incubation (O<sub>2 cum</sub> 8d, 30d and O<sub>2 rate</sub> 8d, 30d), the respiratory quotient (RQ), the maximum O<sub>2</sub> rates over the incubation period (O<sub>2 max</sub>) and time from the beginning of the incubation when O<sub>2 max</sub> occurred (T<sub>max</sub>), were determined in both amended and non-amended soils. Sewage sludge application resulted in increased values for O<sub>2 max</sub>, O<sub>2 rate</sub> 8d, and O<sub>2 cum</sub> 30d. Differences were minor for T<sub>max</sub>, RQ 8d and O<sub>2 rate</sub> 30d. A considerable amount of the initial OM applied was mineralised during the first 8 days. Organic matter decomposition (as expressed by O<sub>2 cum</sub> 30d) was favoured in soils with high values of pH, carbonates, soil organic carbon and low values of amorphous Mn. Soils with these characteristics may potentially lose soil C after sewage sludge application.


2014 ◽  
Vol 60 (No. 11) ◽  
pp. 507-511 ◽  
Author(s):  
D. Pikuła ◽  
A. Rutkowska

The paper presents the results of over 30-years of field experiment on soil organic carbon accumulation under different crop rotation, manure and mineral N fertilization. The experiment was conducted with two crop rotations: A &ndash; recognized as soil exhausting from humus (potatoes, winter wheat, spring barley and corn) and B enriching soil with humus (potatoes, winter wheat, spring barley, and clover with grass mixture). In each crop rotation, five rates of manure &ndash; 0, 20, 40, 60 and 80 t/ha and four rates of mineral fertilizers N1, N2, N3 and N4 were applied. At the beginning of the experiment in 1979, the initial organic carbon content amounted to 0.74%, and after 33 years dropped to 0.61% in crop rotation without legumes. On the contrary, in crop rotation with clover &ndash; grass mixture, the tendency to stabilization of organic carbon quantity in soil was observed with the highest value 0.79% and the lowest one 0.72%. It was found that crop rotation enriching soil with humus produced organic matter ever more than those depleting the soil with humus, regardless of the manure fertilization. Mineral fertilization has modified soil organic carbon content.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Lanlan Zhang ◽  
Zhen Li ◽  
Shiwen Zhang ◽  
Shasha Xia ◽  
Hongguang Zou ◽  
...  

Soil organic matter (SOM), as a kind of natural polymers, affects the migration and transport of ions and particles in soil system due to its surface characteristics and interaction and then causes significant changes in soil quality such as soil fertility loss and pollutant transfer. It is of great importance to study the temporal and spatial evolution of soil organic matter and its driving mechanism for soil health management. This study aims to fully reveal the evolution characteristics and driving mechanism of soil organic carbon (SOC) in farmland of the Beijing plain based on a six-year site monitoring. According to the research results, there is a significant difference in the overall soil organic content during the 6-year period. The temporal stability of SOC is moderate, and it is inversely proportional to SOC content in terms of spatial distribution. SOC content increases as organic fertilizer input rises, and an extra unit (15 kg·ha−1) of organic fertilizer input leads to an increase of 0.057 g·kg−1 in SOC content. The soil with higher clay content exhibits higher SOC content. The organic carbon content in different soil texture types increases with time, and there is a significant difference between the increases in medium loam and light loam. The grain field plantation system exhibited declining SOC content, while the protected vegetable fields, open vegetable fields, and orchards all showed an increase in SOC content. According to our results, the SOC content of farmland in the plain areas of Beijing is largely dependent on the input of organic carbon if other conditions remain unchanged or exhibit insignificant changes.


2018 ◽  
Vol 29 (4) ◽  
pp. 20-25
Author(s):  
Katarzyna Szyszko-Podgórska ◽  
Marek Kondras ◽  
Izabel Dymitryszyn ◽  
Anita Matracka ◽  
Mirosław Cimoch ◽  
...  

Abstract Macrofauna plays a very important role in the functioning of the natural environment. It plays an important role in the decomposition of organic matter by mixing and crushing organic matter in soil. Invertebrate faeces influence the development of microorganisms and their dead bodies stimulate mineralization in the soil. They also influence the humification processes. The aim of the study was to determine the influence of macrofauna and litter distribution and the accumulation of organic carbon in soil. The study showed a significant influence of this thick animal on the processes taking place in the soil. Significant correlations were observed between the organic carbon content in the litter and the organic carbon content in the soil, macrofauna activity with litter decomposition and its influence on the organic carbon accumulation.


2016 ◽  
Vol 6 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Lee Heaton ◽  
Michael A. Fullen ◽  
Ranjan Bhattacharyya

Converting soil organic matter (SOM) data to soil organic carbon (SOC) data usually uses the van Bemmelen factor of 0.58 (or in reverse its reciprocal of 1.724) as a universal conversion factor. The accuracy of this conversion factor has been questioned. Under the Kyoto Protocol (1997) dry combustion is recommended to provide reproducible analyses to measure soil carbon stocks. However, dry combustion equipment is expensive and entails high maintenance. For rapid and inexpensive measurements, loss-on-ignition (LOI) is often used. A total of 278 loamy sand topsoil (0-5 cm depth) samples were taken during three soil sampling sessions (9 January 2007, 22 January 2009 and 10 October 2011) from runoff plots, splash erosion plots and grassed/cultivated plots on the Hilton Experimental Site, Shropshire, UK. A total of 124 soil samples were collected from both runoff and splash plots in both 2007 and 2009 (Bhattacharyya et al., 2011a). Some 22 of the collected samples in 2011 were from grassland (Ah horizon) and eight from cultivated soils (Ap horizon). Homogenized soil samples were split and SOM was determined on oven-dried samples by LOI and total SOC was determined by dry combustion. A conversion factor of 0.845 was used to obtain SOC from total soil C, following Rawlins et al. (2011). Results showed strong associations (R² = 0.70, P 0.001, n = 278) between SOM and SOC data. For all data, SOM to SOC conversion factors varied between 0.36-0.98, with a mean value of 0.66 (SD = 0.105). The mean values of the conversion factor were 0.64, 0.69 and 0.56, respectively, for the samples collected in 2007, 2009 and 2011. Results indicate the van Bemmelen factor (0.58) is a reasonable predictor, but both temporal and spatial variations occur around it within a specific soil type. Thus, caution should be exercised in SOM/SOC data conversions using the van Bemmelen factor.


2020 ◽  
Author(s):  
Eito Nonomura ◽  
Soh Sugihara ◽  
Mayuko Seki ◽  
Hidetoshi Miyazaki ◽  
Muniandi Jegadeesan ◽  
...  

&lt;p&gt;An understanding of the mechanisms of soil organic carbon (SOC) stabilization is essential to develop the appropriate management for C sequestration and soil health. In southern India, where neutral-alkaline soils are mainly distributed, soil C stocks are inherently low in cropland, despite relatively high clay contents (Clay&gt;ca. 30%, OC&lt;ca. 5 g C kg&lt;sup&gt;-1&lt;/sup&gt; soil). To consider this reason of low SOC in this area, we evaluated the fractionated C contents and its controlling factors, by measuring the particulate organic matter (POM). The objective of this study was to evaluate the effect of land management on the amount and composition of each fraction of soil in southern India. We collected the surface soils (0-10 cm) from two representative sites of southern India; Vertisols with alkaline soil pH (8.4-8.8) and Alfisols with neutral soil pH (6.0-7.0). At each site, two different land management were selected; forest and cropland of Vertisols, and cropland with no organic matter application (no-OM) and with manure application (with-OM) of Alfisols. Soils were separated into the four fractions; (1) Light Fraction; LF (&lt;1.7 g cm&lt;sup&gt;-3&lt;/sup&gt;) , (2) Coarse POM; cPOM (&gt;1.7 g cm&lt;sup&gt;-3&lt;/sup&gt;, 250-2000 &amp;#181;m), (3) Fine POM; fPOM(&gt;1.7 g cm&lt;sup&gt;-3&lt;/sup&gt;, 53-250 &amp;#181;m), and (4) Silt+Clay; S+C (&gt;1.7 g cm&lt;sup&gt;-3&lt;/sup&gt;, &lt;53 &amp;#181;m). Each fraction was analyzed by elemental analysis (C, N) and CPMAS &lt;sup&gt;13&lt;/sup&gt;C NMR spectroscopy. In Vertisols, C contents of cPOM, fPOM, S+C were significantly higher in forest (0.65, 0.91, 4.8 g kg&lt;sup&gt;-1&lt;/sup&gt; soil, respectively) than those of cropland (0.17, 0.22, 4.1 g kg&lt;sup&gt;-1&lt;/sup&gt; soil, respectively), causing the higher total SOC in forest (7.8 g kg&lt;sup&gt;-1&lt;/sup&gt; soil) than in cropland (4.5 g kg&lt;sup&gt;-1&lt;/sup&gt; soil). C concentration of cPOM, fPOM, and S+C fractions were also significantly higher in forest (3.7, 7.6, 6.7 g kg&lt;sup&gt;-1&lt;/sup&gt; fraction, respectively) than those of cropland (1.0, 2.7, 5.4 g kg&lt;sup&gt;-1&lt;/sup&gt; fraction, respectively). In particular, increasing rates in cPOM and fPOM (180-280 %) were greater than S+C (24 %), possibly suggesting that forest management should increase the relatively active and intermediate SOC pools through the C accumulation in cPOM and fPOM fractions of Vertisols. In Alfisols, C contents in LF and S+C were significantly higher in with-OM (1.1 and 5.2 g kg&lt;sup&gt;-1&lt;/sup&gt; soil, respectively) than in no-OM (0.76 and 4.7 g kg&lt;sup&gt;-1&lt;/sup&gt; soil, respectively). C concentration of S+C fraction was significantly higher in with-OM (14 g kg&lt;sup&gt;-1&lt;/sup&gt; fraction) than in no-OM (11 g kg&lt;sup&gt;-1&lt;/sup&gt; fraction), but not of cPOM and fPOM fractions. It suggests that the OM application to cropland should increase the slow SOC pool through the C accumulation in S+C fractions of Alfisols. These results indicate that different fraction may contribute to SOC stabilization between Vertisols and Alfisols in southern India.&lt;/p&gt;


2005 ◽  
Vol 2 (1) ◽  
pp. 203-238 ◽  
Author(s):  
D. Huygens ◽  
P. Boeckx ◽  
O. Van Cleemput ◽  
R Godoy ◽  
C. Oyarzún

Abstract. The extreme vulnerability of soil organic carbon to climate and land use change emphasizes the need for further research in different terrestrial ecosystems. We have studied the aggregate stability and carbon dynamics in a chronosequence of three different land uses in a south Chilean Andisols: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). The aim of this study was to investigate the role of Al as soil organic matter stabilizing agent in this Andisol. In a case study, we linked differences in carbon dynamics between the three land use treatments to physical protection and recalcitrance of the soil organic matter (SOM). In this study, C aggregate stability and dynamics were studied using size and density fractionation experiments of the SOM, δ13C and total carbon analysis of the different SOM fractions, and mineralization measurements. The results showed that electrostatic attractions between and among Al-oxides and clay minerals are mainly responsible for the stabilization of soil aggregates and the physical protection of the enclosed soil organic carbon. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS. In contrast, incubation experiments of isolated macro organic matter fractions showed that the recalcitrance of the SOM decreased in another order: PINUS > SGFOR > GRASS. We concluded that physical protection of soil aggregates was the main process determining whole soil C mineralization. Land use changes affected soil organic carbon dynamics in this south Chilean Andisol by altering soil pH and consequently available Al.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 308 ◽  
Author(s):  
Alexey Desyatkin ◽  
Shinya Iwasaki ◽  
Roman Desyatkin ◽  
Ryusuke Hatano

Central Yakutia is in one of the most northern agricultural centers of the world. In this territory a notable area of arable land was made by removing the boreal Taiga with the primary purpose of crop cultivation. Such a method of cultivation significantly changes soil total carbon (STC, soil organic carbon + soil carbonate carbon) balance, because of the destroyed upper humus horizon. Soil organic carbon (SOC) of cultivated arable lands is almost a half of that in forest. In abandoned arable lands with grass vegetation, the recovery of SOC has increased to 30% in comparison with cultivated arable lands. On arable lands recovering with new growth of trees, the SOC is related to the abandonment period. Soil carbonates carbon (SCC) content was significantly lower than SOC and showed significant difference among abandoned and other types of arable lands. Objectives of this study are to identify how STC stocks change in response to conversion of the forests to agricultural land and to analyze the arable land system’s recovery process after abandonment. Furthermore, after transformation of forest to arable land, a significant decrease of STC was observed, primarily due to mechanical loss after plant residue removal. It was also identified that the restoration and self-recovery of STC in abandoned arable lands of Central Yakutia continuously and slightly increase. Grass vegetation regenerates STC for 20 years. While the difference of average STC of forests and cultivated arable lands reached 41%, a new growth of forest on some abandoned arable land follows the tendency of STC decrease due to a low productivity level and suppressing effect on grass vegetation.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 562 ◽  
Author(s):  
C. Y. Sun ◽  
J. S. Liu ◽  
Y. Wang ◽  
N. Zheng ◽  
X. Q. Wu ◽  
...  

Cultivation affects soil organic matter and its fractions. Fulvic acid (FA) and humic acid (HA) make up an important part of soil organic matter, and their binding capacity influences heavy metal behaviour in soil. This research studied changes in soil organic components and the distribution of copper (Cu), lead (Pb), and zinc (Zn) in HA and FA affected by long-term cultivation in black soils. Uncultivated sites and their adjacent cultivated sites (18, 50, and >200 years) were selected. Alkaline sodium hydroxide/pyrophosphate extraction of humic substances and precipitation of HA by acidification were used to separate the HA and FA fractions. Concentrations of Cu, Pb, and Zn in HA and FA were determined. The content of soil organic carbon (C) had decreased by 30% after 200 years of cultivation. Cultivation led to a moderate decrease (38%) in HA and a minor decrease (7%) in FA. The CHA/CFA ratio, which is a humification parameter, decreased from 2.05 in the uncultivated soil to 1.38 in the soil cultivated for 200 years, indicating a lower degree of humification of organic matter in cultivated soils. Of the Na4P2O7 + NaOH-extracted Pb and Zn, 47–60% and 63–76%, respectively, was associated with FA, showing that FA has a high affinity for Pb and Zn. Of the Na4P2O7 + NaOH-extracted Cu, 55% was in the HA fraction. The share of Cu and Zn in the HA fraction decreased with cultivation time, but cultivation did not bring about a systematic change in Pb distribution in humic substances. The results show that cultivation can decrease the humified C content and metals bound to the HA fraction, and suggest that cultivation may potentially increase the mobility of heavy metals.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


Sign in / Sign up

Export Citation Format

Share Document