EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al--Cu ALLOYS

2013 ◽  
Vol 48 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Xianfei ZHANG ◽  
Jiuzhou ZHAO
2013 ◽  
Vol 668 ◽  
pp. 870-874
Author(s):  
Heng Min Ding ◽  
Tie Qiao Zhang ◽  
Lv Chun Pu

In the paper, a model basing on solute conservative in every unit is developed for solving the solute diffusion equation during solidification. The model includes time-dependent calculations for temperature distribution, solute redistribution in the liquid and solid phases. Three-dimensional computations are performed for Al-Cu dendritic growth into an adiabatic and highly supersaturated liquid phase. A numerical algorithm was developed to explicitly track the sharp solid/liquid (S/L) interface on a fixed Cartesian grid. Three-dimensional mesoscopic calculations were performed to simulate the evolution of equiaxed dendritic morphologies.


1994 ◽  
Vol 42 (5) ◽  
pp. 1653-1660 ◽  
Author(s):  
Shu-Zu Lu ◽  
J.D. Hunt ◽  
P. Gilgien ◽  
W. Kurz

1992 ◽  
Vol 114 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Y. T. Lin ◽  
M. Choi ◽  
R. Greif

A study has been made of the deposition of particles that occurs during the modified chemical vapor deposition (MCVD) process. The three-dimensional conservation equations of mass, momentum, and energy have been solved numerically for forced flow, including the effects of buoyancy and variable properties in a heated, rotating tube. The motion of the particles that are formed is determined from the combined effects resulting from thermophoresis and the forced and secondary flows. The effects of torch speed, rotational speed, inlet flow rate, tube radius, and maximum surface temperature on deposition are studied. In a horizontal tube, buoyancy results in circumferentially nonuniform temperature and velocity fields and particle deposition. The effect of tube rotation greatly reduces the nonuniformity of particle deposition in the circumferential direction. The process is chemical-reaction limited at larger flow rates and particle-transport limited at smaller flow rates. The vertical tube geometry has also been studied because its symmetric configuration results in uniform particle deposition in the circumferential direction. The “upward” flow condition results in a large overall deposition efficiency, but this is also accompanied by a large “tapered entry length.”


2000 ◽  
Author(s):  
David A. Scott ◽  
P. H. Oosthuizen

Abstract Heat transfer from relatively short vertical isothermal cylinders in a horizontal forced fluid flow has been considered. The flow conditions are such that the buoyancy forces resulting from the temperature differences in the flow are in general significant despite of the presence of a horizontal forced flow of air, that is, mixed convective flow exists. Because the cylinders are short and the buoyancy forces act normal to the forced flow, three-dimensional flow exists. The experiments were performed in a low velocity, open jet wind tunnel. The study involved the experimental determination of the mean heat transfer coefficient and a comparison of the results with a previous numerical analysis. Mean heat transfer rates were determined using the ‘lumped capacity’ method. The mean Nusselt number has the Reynolds number, Grashof number and the height to diameter ratio of the cylinders as parameters. The results have been used to determine the conditions under which the flow departs from purely forced convection and enters the mixed convection regime, i.e., determining the conditions for which the buoyancy effects should be included in convective heat transfer calculations for short cylinders.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


Author(s):  
T. M. Damiani ◽  
J. E. Holliday ◽  
M. J. Zechmeister ◽  
R. D. Reinheimer ◽  
D. P. Jones

Thermal fatigue cracking has been observed for thick perforated spacer rings used as part of a thermal fatigue test loop operating at Bechtel Bettis, Inc. The perforated rings are used for instrumentation access to the fluid flow at the test specimen inlet and outlet, and are subject to alternating hot and cold forced flow, low oxygenated water every three minutes so that rapid changes in water temperature impart a thermal shock event to the inner wall of the rings. Thermal and structural three dimensional elastic and elastic-plastic finite element analyses (FEA) were conducted for the ring and the results used to predict fatigue crack initiation using strain-based fatigue-life algorithms. Predicted cycles-to-crack initiation agreed well with the observed cracking when alternating shear strain intensity analogous to the Tresca stress was used. This analysis qualifies the use of FEA for thermal fatigue assessments of complicated three-dimensional components.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


Sign in / Sign up

Export Citation Format

Share Document