Analysis of Multi-scale Effect of Landscape Indices of Classical Landforms in Yuncheng City, Shanxi Province

2012 ◽  
Vol 14 (3) ◽  
pp. 338-343
Author(s):  
Rutian BI ◽  
Yan GAO
2018 ◽  
Vol 22 (1) ◽  
pp. 331-350 ◽  
Author(s):  
Abdellah Ichiba ◽  
Auguste Gires ◽  
Ioulia Tchiguirinskaia ◽  
Daniel Schertzer ◽  
Philippe Bompard ◽  
...  

Abstract. Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of “model calibration” by innovative methods of “model resolution alteration” based on the spatial data variability and scaling of flows in urban hydrology.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3286
Author(s):  
Wei Xiong ◽  
Jianfeng Wang ◽  
Zhuang Cheng

Particle morphology is of great significance to the grain- and macro-scale behaviors of granular soils. Most existing traditional morphology descriptors have three perennial limitations, i.e., dissensus of definition, inter-scale effect, and surface roughness heterogeneity, which limit the accurate representation of particle morphology. The inter-scale effect refers to the inaccurate representation of the morphological features at the target relative length scale (RLS, i.e., length scale with respective to particle size) caused by the inclusion of additional morphological details existing at other RLS. To effectively eliminate the inter-scale effect and reflect surface roughness heterogeneity, a novel spherical harmonic-based multi-scale morphology descriptor Rinc is proposed to depict the incremental morphology variation (IMV) at different RLS. The following conclusions were drawn: (1) the IMV at each RLS decreases with decreasing RLS while the corresponding particle surface is, in general, getting rougher; (2) artificial neural network (ANN)-based mean impact values (MIVs) of Rinc at different RLS are calculated and the results prove the effective elimination of inter-scale effects by using Rinc; (3) Rinc shows a positive correlation with the rate of increase of surface area RSA at all RLS; (4) Rinc can be utilized to quantify the irregularity and roughness; (5) the surface morphology of a given particle shows different morphology variation in different sections, as well as different variation trends at different RLS. With the capability of eliminating the existing limitations of traditional morphology descriptors, the novel multi-scale descriptor proposed in this paper is very suitable for acting as a morphological gene to represent the multi-scale feature of particle morphology.


2012 ◽  
Vol 524-527 ◽  
pp. 2911-2919 ◽  
Author(s):  
Li Yan Zhang ◽  
Guo Hao Zhao

As an important framework evaluating the reasons behind the competitiveness of nations in particular industry, Porter’s diamond is used as the main analytical structure in this thesis for addressing the merge and acquisition issue of coal enterprises in China’s Shanxi Province. Through a comprehensive analysis from the perspectives of the six factors from the model, the paper finds that forming large corporations by merging and restructuring is an inevitable and beneficial way for coal enterprises to achieve scale effect and safe production at the meantime to realize mechanization and modernization. The reform is strategically meaningful to improving competitive advantages and optimizing industrial structures of coal companies. Based on the research and analysis, the thesis also raised 5 feasible ways to further enhance the competitiveness of coal enterprises.


Author(s):  
Y. Yao ◽  
H. Liang ◽  
X. Li ◽  
J. Zhang ◽  
J. He

With the rapid progress of China’s urbanization, research on the automatic detection of land-use patterns in Chinese cities is of substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model’s ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate the impact of urban-planning schemes.


Sign in / Sign up

Export Citation Format

Share Document