Discrete sliding-mode guidance laws design based on variable rate reaching law

2013 ◽  
Vol 33 (3) ◽  
pp. 878-881 ◽  
Author(s):  
Yanjun SHU ◽  
Shuo TANG
2011 ◽  
Vol 460-461 ◽  
pp. 827-830 ◽  
Author(s):  
Jing Feng Mao ◽  
Ai Hua Wu ◽  
Guo Qing Wu ◽  
Xu Dong Zhang

In order to eliminate the chattering phenomena caused by conventional sliding mode control (SMC) method in magnetic bearing system control, this paper proposes a variable rate reaching law approach based sliding mode controller to achieve higher system stability and robustness. In this control law, system states’ normal numbers are brought in to automatic adjust the gain of the switching control part of SMC. The controller output amplitude of chattering can be progressively damped, and the system will converge to zero asymptotically. The system stability is proved by Laypunov theory, and the prerequisite of control law parameters design is deduced out. Simulation results show that the proposed SMC control method has effectiveness in dynamic suspension position tracking performance and obtaining system robustness.


2018 ◽  
Vol 41 (2) ◽  
pp. 321-339 ◽  
Author(s):  
Yu-Jie Si ◽  
Shen-Min Song

Three-dimensional finite-time guidance laws are proposed in this paper. Differing from the traditional approach that considers homing guidance problems as two identical and perpendicular channels, guidance laws proposed in this paper employ the coupled three-dimensional engagement dynamics to improve the guidance precision. A new reaching law is adopted to guarantee guidance laws continuous, which eliminates the chattering phenomenon caused by discontinuous terms. Moreover, the guidance law accelerates the convergence rate of closed-loop systems and avoids the singularity. Afterwards, the paper discusses the problem that the upper bound of the lumped uncertainty including the target information is unavailable. Therefore, to deal with this problem, another adaptive guidance law is presented, which can also guarantee the finite-time convergence of guidance systems. Numerical simulations have demonstrated that the two guidance laws have effective performance and outperform traditional terminal sliding mode guidance laws.


2011 ◽  
Vol 105-107 ◽  
pp. 2213-2216 ◽  
Author(s):  
Sheng Bin Hu ◽  
Min Xun Lu

To achieve the tracing control of a three-links spatial robot, a backstepping fuzzy sliding mode controller based on variable rate reaching law is proposed in this paper. The sliding mode controller is designed by means of backstepping way. To reduce the adjustment time, a fuzzy controller is designed to adjust the slope of sliding mode surface. To diminish the chattering of traditional sliding mode control, the variable rate reaching law is proposed. The variable rate reaching law is composed of the distance from current point to sliding mode surface in phase plane. The simulation studies for the tracking control of a three-links spatial robot have been carried out. Simulation results show the validity of the proposed control scheme.


2012 ◽  
Vol 178-181 ◽  
pp. 2801-2804
Author(s):  
Sheng Bin Hu ◽  
Wen Hua Lu ◽  
Zhi Yi Chen ◽  
Lei Lei ◽  
Yi Xuan Zhang

A fuzzy sliding mode control scheme based on variable rate reaching law for attitude control of flapping wing micro aerial vehicle is proposed in this paper. Based on the feedback linearization technique, a sliding mode controller is designed. To faster response speed, a fuzzy controller is designed to adaptively tune the slope of sliding mode surface. To reduce the chattering, the variable rate reaching law is proposed. The variable rate reaching law is composed of the distance from current point to sliding mode surface in phase plane. The simulation studies for attitude control of a flapping wing micro aerial vehicle have been carried out. Simulation results show that the proposed control scheme is effective.


Author(s):  
Brahim Brahmi ◽  
Khaled El-Monajjed ◽  
Mohammad Habibur Rahman ◽  
Tanvir Ahmed ◽  
Claude El-Bayeh ◽  
...  

Author(s):  
Xigang Chen ◽  
Yangmin Li ◽  
Haifeng Ma ◽  
Hui Tang ◽  
Yanlin Xie

Author(s):  
Xiaolei Shi ◽  
Yipeng Lan ◽  
Yunpeng Sun ◽  
Cheng Lei

This paper presents a sliding mode observer (SMO) with new reaching law (NRL) for observing the real-time linear speed of a controllable excitation linear synchronous motor (CELSM). For the purpose of balancing the dilemma between the rapidity requirement of dynamic performance and the chattering reduction on sliding mode surface, the proposed SMO with NRL optimizes the reaching way of the conventional constant rate reaching law (CRRL) to the sliding mode surface by connecting the reaching process with system states and the sliding mode surface. The NRL is based on sigmoid function and power function, with proper options of exponential term and power term, the NRL is capable of eliminating the effect of chattering on accuracy of the angular position estimation and speed estimation. Compared with conventional CRRL, the SMO with NRL achieves suppressing the chattering phenomenon and tracking the transient process rapidly and accurately. The stability analysis is given to prove the convergence of the SMO through the Lyapunov stability theory. Simulation and experimental results show the effectiveness of the proposed NRL method.


Sign in / Sign up

Export Citation Format

Share Document