Low-power secure localization algorithm based on distributed reputation evaluation

2013 ◽  
Vol 33 (7) ◽  
pp. 1802-1804
Author(s):  
Yong WANG ◽  
Chaoyan YUAN ◽  
Jing TANG ◽  
Liangliang HU

The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


2018 ◽  
Vol 14 (06) ◽  
pp. 151
Author(s):  
Shuang Xu ◽  
Tong Zhou

<p class="0abstract"><span lang="EN-US">In order to study the intelligent buildings, the intelligent building network security of wireless sensor was explored. Because of its advantages of low cost, easy installation, low maintenance and update cost, wireless sensor network system was applied to intelligent building. In view of the characteristics of various influencing factors on the wireless sensor network working environment, node hardware cost and location accuracy, a secure localization algorithm based on DV-Hop was put forward. The security analysis results showed that the algorithm resisted external attacks and guaranteed the accuracy of location results. Based on the above findings, it is concluded that the algorithm can be used to protect the safety of wireless sensor network in building. </span></p>


2021 ◽  
Vol 84 (1) ◽  
pp. 97-105
Author(s):  
S. Kavetha ◽  
A. S. Ja'afar ◽  
M. Z. A. Aziz ◽  
A. A. M. Isa ◽  
M. S. Johal ◽  
...  

LoRa is identified as Long-Range low power network technology for Low Power Wide Area Network (LPWAN) usage. Nowadays, Global Positioning System (GPS) is an important system which is used for location and navigation predominantly used in outdoor but less accurate in indoor environment. Most of LoRa technology have been used on the internet-of-things (ioT) but very few use it as localization system. In this project, a GPS-less solution is proposed where LoRa Positioning System was developed which consists of LoRa transmitter, LoRa transceiver and LoRa receiver. The system has been developed by collecting the RSSI which is then used for the distance estimation. Next, Kalman filter with certain model has been implemented to overcome the effect of multipath fading especially for indoor environment and the trilateration technique is applied to estimate the location of the user. Both distribution estimation results for Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) condition were analyzed. Then, the comparison RMSE achievement is analyzed between the trilateration and with the Kalman Filter. GPS position also were collected as comparison to the LoRa based positioning. Lastly, the Cumulative Density Function (CDF) shows 90% of the localization algorithm error for LOS is lower than 0.82 meters while for NLOS is 1.17 meters.


2019 ◽  
Vol 19 (2) ◽  
pp. 785-796 ◽  
Author(s):  
Xingcheng Liu ◽  
Shaohua Su ◽  
Feng Han ◽  
Yitong Liu ◽  
Zhihong Pan

Sign in / Sign up

Export Citation Format

Share Document