scholarly journals DEVELOPMENT OF LOCATION ESTIMATION ALGORITHM UTILIZING RSSI FOR LORA POSITIONING SYSTEM

2021 ◽  
Vol 84 (1) ◽  
pp. 97-105
Author(s):  
S. Kavetha ◽  
A. S. Ja'afar ◽  
M. Z. A. Aziz ◽  
A. A. M. Isa ◽  
M. S. Johal ◽  
...  

LoRa is identified as Long-Range low power network technology for Low Power Wide Area Network (LPWAN) usage. Nowadays, Global Positioning System (GPS) is an important system which is used for location and navigation predominantly used in outdoor but less accurate in indoor environment. Most of LoRa technology have been used on the internet-of-things (ioT) but very few use it as localization system. In this project, a GPS-less solution is proposed where LoRa Positioning System was developed which consists of LoRa transmitter, LoRa transceiver and LoRa receiver. The system has been developed by collecting the RSSI which is then used for the distance estimation. Next, Kalman filter with certain model has been implemented to overcome the effect of multipath fading especially for indoor environment and the trilateration technique is applied to estimate the location of the user. Both distribution estimation results for Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) condition were analyzed. Then, the comparison RMSE achievement is analyzed between the trilateration and with the Kalman Filter. GPS position also were collected as comparison to the LoRa based positioning. Lastly, the Cumulative Density Function (CDF) shows 90% of the localization algorithm error for LOS is lower than 0.82 meters while for NLOS is 1.17 meters.

Author(s):  
Hongqiang Li ◽  
Dongyan Zhao ◽  
Xiaoke Tang ◽  
Jie Gan ◽  
Xu Zhao ◽  
...  

With the rapid development of IoT technology in recent years, higher requirements have been put forward for wireless communication technology. Low Power Wide Area Network (LPWAN) technology is emerging rapidly, the technology is characterized by low power consumption, low bandwidth, long-distance, and a large number of connections, and is specifically designed for Internet of Things applications. LoRa (Low Power Long Range Transceiver), as a typical representative of LPWAN technology, has been widely concerned and studied. This paper analyzes the performance of LoRa modulation in the tree topology network and analyzes the performance of LoRa modulation in the imperfect environment for point-to-point communication and multipoint-to-point communication. From theoretical analysis and performance simulation, it can be seen that the influence of frequency offset or multipath fading on LoRa signal is very obvious. However, when LoRa modulation is used for networking, multi-user interference will be introduced. Under the influence of many imperfect factors, the signal receiver performance of LoRa modulation will be difficult to guarantee. Because of these effects, Coordinated Multiple Points based on Timing Delay (DCoMP) is presented. Multiple nodes close to each other send the same data to the target node. Due to the inaccurate synchronization between nodes, there will be a certain relative delay when sending signals to the same target node. After the receiving node combines the signals of multiple nodes according to different relative delays, the reception performance of the signals can be improved. At the same time, the cooperative node can also actively adjust the signal sending time to improve the reception performance of the receiving node signal merging algorithm. LoRa modulation, by using DCoMP transmission, improves the reception of signals and thus the overall capacity of the system. Through the analysis of multipoint communication and single point communication, this paper is of great help to LoRa network deployment.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


2020 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Mattia Ragnoli ◽  
Gianluca Barile ◽  
Alfiero Leoni ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.


2016 ◽  
Vol 04 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Cunxiao Miao ◽  
Abdul Hanif Zaini ◽  
Chun-Lin Chen ◽  
...  

Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 52-62
Author(s):  
Kwai Yang Sak ◽  
Ahmad Najmuddin Ibrahim

Long Range (LoRa) is a wireless radio frequency technology under the Low Power Wide Area Network (LPWAN). LoRa is able to communicate long range and low energy consumption. The communication range has become an essential element in the wireless radio frequency technology in the Internet of Things (IoT). The presence of LoRa is able IoT application performs in long communication distances with high noise sensitivity ability. People can operate, monitor, and do a variety of tasks from a remote distance. Therefore, this research aims to evaluate the performance of the LoRa connection between radio transceivers in remote locations. The different environment and structural elements affect the LoRa performance. This thesis will be supported by the experiment that LoRa communication in different environments and tests. This experiment tests in line of sight (LOS) and non-line of sight (NLOS). Two sets of LoRa parameters, including Spreading Factor (SF), Bandwidth, and coding rate, are tested in different environments. The experiment tests the LoRa performance in various aspects: received signal strength indicator (RSSI) and packet received ratio (PPR) at different coverage ranges. In addition, the LoRa performance is evaluated in university, residential areas and vegetation areas under similar temperature, weather, and time. The LoRa coverage distance in the vegetation area and university area is reached 900 meters in the LOS test. Still, the vegetation area's signal is more stable and able to receive weaker RSSI signals. The LoRa coverage distance in the NLOS test is shorter compared to the LOS test. NLOS test has only one-third of the LOS LoRa communication distance. It is due to the signal penetration on structural elements such as buildings and woods cause the signal power loss and only transmitting a shorter distance. The LoRa parameter with SF9, 31.25kHz bandwidth and 4/8 coding rate has a better coverage range and stable connection.


2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


Author(s):  
Paulo Renato Câmera da Silva ◽  
Herman Augusto Lepikson ◽  
Marcus Vinícius Ivo da Silva ◽  
Rafael Barbosa Mendes

Sign in / Sign up

Export Citation Format

Share Document