scholarly journals A Survey on Immersive Visualization

2021 ◽  
Vol 33 (4) ◽  
pp. 497-507
Author(s):  
Shuainan Ye ◽  
Xiangtong Chu ◽  
Yingcai Wu
2016 ◽  
Vol 173 ◽  
pp. 245-255 ◽  
Author(s):  
Mohammadreza Babaee ◽  
Stefanos Tsoukalas ◽  
Gerhard Rigoll ◽  
Mihai Datcu

2021 ◽  
Author(s):  
Akshay Murari ◽  
Elias Mahfoud ◽  
Weichao Wang ◽  
Aidong Lu

Author(s):  
F. Chiabrando ◽  
C. Della Coletta ◽  
G. Sammartano ◽  
A. Spanò ◽  
A. Spreafico

In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000&amp;thinsp;m<sup>2</sup>, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.


2012 ◽  
Vol 1 (4) ◽  
pp. 17-34 ◽  
Author(s):  
Juri Engel ◽  
Jürgen Döllner

Immersive visualization offers an intuitive access to and an effective way of realizing, exploring, and analyzing virtual 3D city models, which are essential tools for effective communication and management of complex urban spatial information in e-planning. In particular, immersive visualization allows for simulating planning scenarios and to receive a close-to-reality impression by both non-expert and expert stakeholders. This contribution is concerned with the main requirements and technical concepts of a system for visualizing virtual 3D city models in large-scale, fully immersive environments. It allows stakeholders ranging from citizens to decision-makers to explore and examine the virtual 3D city model and embedded planning models “in situ.” Fully immersive environments involve a number of specific requirements for both hardware and 3D rendering including enhanced 3D rendering techniques, an immersion-aware, autonomous, and assistive 3D camera system, and a synthetic, immersion-supporting soundscape. Based on these requirements, the authors have implemented a prototypical visualization system that the authors present in this article. The characteristics of fully immersive visualization enable a number of new applications within e-planning workflows and processes, in particular, with respect to public participation, decision support, and location marketing.


2020 ◽  
Vol 9 (1) ◽  
pp. 34
Author(s):  
Luigi Barazzetti ◽  
Mattia Previtali ◽  
Marco Scaioni

The identification of deterioration mechanisms and their monitoring over time is an essential phase for conservation. This work aimed at developing a novel approach for deterioration mapping and monitoring based on 360° images, which allows for simple and rapid data collection. The opportunity to capture the whole scene around a 360° camera reduces the number of images needed in a condition mapping project, resulting in a powerful solution to document small and narrow spaces. The paper will describe the implemented workflow for deterioration mapping based on 360° images, which highlights pathologies on surfaces and quantitatively measures their extension. Such a result will be available as standard outputs as well as an innovative virtual environment for immersive visualization. The case of multi-temporal data acquisition will be considered and discussed as well. Multiple 360° images acquired at different epochs from slightly different points are co-registered to obtain pixel-to-pixel correspondence, providing a solution to quantify and track deterioration effects.


Sign in / Sign up

Export Citation Format

Share Document