Numerical computation and experimental verification of a derivatized moving reaction boundary originally created with formic buffer and sodium hydroxide

2016 ◽  
Vol 34 (8) ◽  
pp. 801
Author(s):  
Xuejing WU ◽  
Jie JIN ◽  
Wei YAN ◽  
Hua XIAO ◽  
Liuyin FAN ◽  
...  
2021 ◽  
Vol 1038 ◽  
pp. 361-373
Author(s):  
Maksym Kustov ◽  
Andriy Melnychenko ◽  
Dmytro Taraduda ◽  
Alla Korogodska

Modified stepwise model of gas sorption process with finely dispersed water flow. The sorption model allows forecasting the intensity of hazardous gases deposition with adequate for the emergency recovery conditions accuracy using minimum input parameters. This allows using the sorption model under the conditions of emergency and increasing the forecasting promptness. Use of chemical neutralizer is proposed to increase the effectiveness of chlorine hazardous gas deposition. Use of sodium hydroxide is proposed as the chlorine chemical neutralizer, which is easily dissolved in water, non-toxic and easy to store. An experimental laboratory facility was developed and created with the purpose of experimental verification of the sorption processes, which allows researching the sorption processes by liquid aerosols within a wide range of dispersity. Adequacy of the existing models as well as the modified one was verified experimentally. The verification results showed a 5% indicator of the theoretical and experimental results compliance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yupiter H. P. Manurung ◽  
Keval P. Prajadhiana ◽  
Mohd Shahriman Adenan ◽  
Birgit Awiszus ◽  
Marcel Graf ◽  
...  

2002 ◽  
Vol 41 (15) ◽  
pp. 3696-3704 ◽  
Author(s):  
Kai Zhang ◽  
Hu Zhang ◽  
Jonathon Lovick ◽  
Jiyu Zhang ◽  
Bijiang Zhang

Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

Thin sheets of acrylamide and agar gels of different concentrations were prepared and washed in distilled water, cut into pieces of appropriate size to fit into complementary freeze-etch specimen holders (1) and rapidly frozen. Freeze-etching was accomplished in a modified Denton DFE-2 freeze-etch unit on a DV-503 vacuum evaporator.* All samples were etched for 10 min. at -98°C then re-cooled to -150°C for deposition of Pt-C shadow- and C replica-films. Acrylamide gels were dissolved in Chlorox (5.251 sodium hypochlorite) containing 101 sodium hydroxide, whereas agar gels dissolved rapidly in the commonly used chromic acid cleaning solutions. Replicas were picked up on grids with thin Foimvar support films and stereo electron micrographs were obtained with a JEM-100 B electron microscope equipped with a 60° goniometer stage.Characteristic differences between gels of different concentrations (Figs. 1 and 2) were sufficiently pronounced to convince us that the structures observed are real and not the result of freezing artifacts.


2020 ◽  
Vol 8 (38) ◽  
pp. 13368-13374
Author(s):  
Muhammad Umair Khan ◽  
Gul Hassan ◽  
Jinho Bae

This paper proposes a novel soft ionic liquid (IL) electrically functional device that displays resistive memory characteristics using poly(acrylic acid) partial sodium salt (PAA-Na+:H2O) solution gel and sodium hydroxide (NaOH) in a thin polydimethylsiloxane (PDMS) cylindrical microchannel.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.


Sign in / Sign up

Export Citation Format

Share Document