Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes

2012 ◽  
Vol 18 (6) ◽  
pp. 978
Author(s):  
Yang CUI ◽  
Wentao SU ◽  
Ping GAO ◽  
Daping LI
2013 ◽  
Vol 291-294 ◽  
pp. 602-605 ◽  
Author(s):  
Liang Liu ◽  
Wen Yi Zhang

In this study we investigated the use of a microbial fuel cell (MFC) to abioticlly cathodic decolorization of a model azo dye, Methyl Orange (MO). Experimental results showed that electricity could be continuously generated the MO-fed MFC and MO was successfully decolorized in the cathode. The decolorization rate was highly dependent on the catholyte pH. When pH was varied from 3.0 to 9.0, the k value in relation to MO degradation decreased from 0.298 to 0.016 μmol min-1, and the maximum power density decreased from 34.77 to 1.51 mW m-2. Sulfanilic acid and N,N-dimethyl-p-phenylenediamine were identified as the decolorization products of MO by HPLC-MS.


2010 ◽  
Vol 160 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Lei Fu ◽  
Shi-Jie You ◽  
Guo-quan Zhang ◽  
Feng-Lin Yang ◽  
Xiao-hong Fang

2015 ◽  
Vol 3 (1) ◽  
pp. 9-18
Author(s):  
Ali J. Jaeel

Chicken manure wastewaters are increasingly being considered a valuable resource of organic compounds. Screened chicken manure was evaluated as a representative solid organic waste. In this study, electricity generation from livestock wastewater (chicken manure) was investigated in a continuous mediator-less horizontal flow microbial fuel cell with graphite electrodes and a selective type of membrane separating the anodic and cathodic compartments of MFC from each other. The performance of MFC was evaluated to livestock wastewater using aged anaerobic sludge. Results revealed that COD and BOD removal efficiencies were up to 88% and 82%, respectively. At an external resistance value of 150 Ω, a maximum power and current densities of 278 m.W/m2 and 683 mA/m2, respectively were obtained, hence MFC utilizing livestock wastewater would be a sustainable and reliable source of bio-energy generation .


Sign in / Sign up

Export Citation Format

Share Document