Acoustic experimental study of two types of rock from the Tibetan Plateau under the condition of freeze-thaw cycles

2012 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Liu Hua ◽  
Niu Fu-Jun ◽  
Xu Zhi-Ying ◽  
Lin Zhan-Ju ◽  
Xu Jian
2007 ◽  
Vol 52 (1) ◽  
pp. 136-139 ◽  
Author(s):  
MeiXue Yang ◽  
TanDong Yao ◽  
XiaoHua Gou ◽  
Nozomu Hirose ◽  
Hide Yuki Fujii ◽  
...  

2019 ◽  
Vol 226 ◽  
pp. 16-25 ◽  
Author(s):  
Donghai Zheng ◽  
Xin Li ◽  
Xin Wang ◽  
Zuoliang Wang ◽  
Jun Wen ◽  
...  

2018 ◽  
Vol 50 (1) ◽  
pp. e1439155 ◽  
Author(s):  
Huiru Jiang ◽  
Wenjiang Zhang ◽  
Yonghong Yi ◽  
Kun Yang ◽  
Guicai Li ◽  
...  

2019 ◽  
Author(s):  
Eike Reinosch ◽  
Johannes Buckel ◽  
Jie Dong ◽  
Markus Gerke ◽  
Jussi Baade ◽  
...  

Abstract. Climate change and the associated rise in air temperature have affected the Tibetan Plateau to a significantly stronger degree than the global average over the past decades. This has caused deglaciation, permafrost degradation and increased precipitation, heavily changing the water balance of this region. Surface displacement processes are likely to change as the ground continues to warm up and as such it is vital to understand both seasonal and interannual processes dynamics. The Nam Co area is well suited to studying these processes via Interferometric Synthetic Aperture Radar (InSAR) time series analysis, due to its lack of higher vegetation and relatively thin snow cover. The short revisit time of the Sentinel-1 system further reduces the risk of temporal decorrelation, making it possible to produce surface displacement models with good spatial coverage. We created three different surface displacement models to study freeze-thaw processes, seasonal sliding and linear creep. Most slopes of the area are unstable, with velocities of 8 to 17 mm yr−1, and some landforms reach velocities of up to 18 cm yr−1. The monsoonal climate accelerates those movements during the summer months through high temperatures and heavy rainfall. The fastest moving landforms, some of which have been identified as rock glaciers, do not follow this seasonal pattern of accelerated velocity in summer, instead they follow a linear sliding pattern. It is unclear if this linearity is connected to the ice content in those landforms. Flat regions at Nam Co are mostly stable on a multiannual scale but some experience subsidence, which could be caused by permafrost degradation. We observe a very clear seasonal freeze-thaw cycle in the valleys, where thawing and subsequent freezing of the active layer cause a vertical oscillation of the ground of up to a few centimeters, especially near streams and other water bodies.


2020 ◽  
Vol 8 ◽  
Author(s):  
Huiru Jiang ◽  
Guanheng Zheng ◽  
Yonghong Yi ◽  
Deliang Chen ◽  
Wenjiang Zhang ◽  
...  

Recent climate change has induced widespread soil thawing and permafrost degradation in the Tibetan Plateau. Significant advances have been made in better characterizing Tibetan Plateau soil freeze/thaw dynamics, and their interaction with local-scale ecohydrological processes. However, factors such as sparse networks of in-situ sites and short observational period still limit our understanding of the Tibetan Plateau permafrost. Satellite-based optical and infrared remote sensing can provide information on land surface conditions at high spatial resolution, allowing for better representation of spatial heterogeneity in the Tibetan Plateau and further infer the related permafrost states. Being able to operate at “all-weather” conditions, microwave remote sensing has been widely used to retrieve surface soil moisture, freeze/thaw state, and surface deformation, that are critical to understand the Tibetan Plateau permafrost state and changes. However, coarse resolution (>10 km) of current passive microwave sensors can add large uncertainties to the above retrievals in the Tibetan Plateau area with high topographic relief. In addition, current microwave remote sensing methods are limited to detections in the upper soil layer within a few centimetres. On the other hand, algorithms that can link surface properties and soil freeze/thaw indices to permafrost properties at regional scale still need improvements. For example, most methods using InSAR (interferometric synthetic aperture radar) derived surface deformation to estimate active layer thickness either ignore the effects of vertical variability of soil water content and soil properties, or use site-specific soil moisture profiles. This can introduce non-negligible errors when upscaled to the broader Tibetan Plateau area. Integrating satellite remote sensing retrievals with process models will allow for more accurate representation of Tibetan Plateau permafrost conditions. However, such applications are still limiting due to a number of factors, including large uncertainties in current satellite products in the Tibetan Plateau area, and mismatch between model input data needs and information provided by current satellite sensors. Novel approaches to combine diverse datasets with models through model initialization, parameterization and data assimilation are needed to address the above challenges. Finally, we call for expansion of local-scale observational network, to obtain more information on deep soil temperature and moisture, soil organic carbon content, and ground ice content.


2020 ◽  
Author(s):  
Siqiong Luo

<p>The change in spatial-temporal distribution of seasonally frozen ground (SFG) is an important indicator of climate change. Based on observed daily freeze depth of SFG from meteorological stations on the Tibetan Plateau (TP) from 1960 to 2014, the spatial-temporal characteristics and  trends in SFG were analyzed, and the relationships between them and climatic and geographical factors were explored. Spatial-temporal distribution of SFG on a regional scale was assessed by multiple regression functions. Results showed multi-year mean maximum freeze depth, freeze-thaw duration, freeze start date, and thaw end date demonstrate obvious distribution characteristics of climatic zones. A decreasing trend in maximum freeze depth and freeze-thaw duration occurred on the TP from 1960 to 2014. The freeze start date has been later and the thaw end date has been significantly earlier. Warming and wetting conditions of the soil resulted in a decrease in the maximum freeze depth and freeze-thaw duration, both spatially and temporally. The spatial distribution of SFG has been altered significantly by soil thermal conditions on the TP and could be assessed by elevation and latitude or by air temperature and precipitation, due to their high correlations. The regional average of maximum freeze depth and freeze-thaw duration caused by climatic and geographical factors was larger than those averaged using meteorological station data because most stations are located at lower altitudes. Maximum freeze depth and freeze-thaw duration has decreased sharply since 2000 on the entire TP.</p>


Sign in / Sign up

Export Citation Format

Share Document