Extracellular Matrix Stability of Primary Mammalian Chondrocytes and Intervertebral Disc Cells Cultured in Alginate-Based Microbead Hydrogels

2008 ◽  
Vol 17 (10-11) ◽  
pp. 1181-1192 ◽  
Author(s):  
S. A. Abbah ◽  
W. W. Lu ◽  
S. L. Peng ◽  
D. M. K. Aladin ◽  
Z. Y. Li ◽  
...  

Three-dimensional alginate constructs are widely used as carrier systems for transplantable cells. In the present study, we evaluated the chondrogenic matrix stability of primary rat chondrocytes and intervertebral disc (IVD) cells cultured in three different alginate-based microbead matrices to determine the influence of microenvironment on the cellular and metabolic behaviors of chondrogenic cells confined in alginate microbeads. Cells entrapped in calcium, strontium, or barium ion gelled microbeads were monitored with the live/dead dual fluorescent cell viability assay kit and the 1,9-dimethylmethylene blue (DMB) assay designed to evaluate sulfated glycosaminoglycan (s-GAG) production. Expression of chondrogenic extracellular matrix (ECM) synthesis was further evaluated by semiquantitative RT-PCR of sox9, type II collagen, and aggrecan mRNAs. Results indicate that Ca and Sr alginate maintained significantly higher population of living cells compared to Ba alginate (p < 0.05). Production of s-GAG was similarly higher in Ca and Sr alginate microbead cultures compared to Ba alginate microbeads. Although there was no significant difference between strontium and calcium up to day 14 of culture, Sr alginate showed remarkably improved cellular and metabolic activities on long-term cultures, with chondrocytes expressing as much as 31% and 44% greater s-GAG compared to calcium and barium constructs, respectively, while IVD cells expressed 63% and 74% greater s-GAG compared to calcium and barium constructs, respectively, on day 28. These findings indicate that Sr alginate represent a significant improvement over Ca- and Ba alginate microbeads for the maintenance of chondrogenic phenotype of primary chondrocytes and IVD cells.

Spine ◽  
1997 ◽  
Vol 22 (24) ◽  
pp. 2885-2893 ◽  
Author(s):  
Kazuhiro Chiba ◽  
Gunnar B. J. Andersson ◽  
Koichi Masuda ◽  
Eugene J-M. A. Thonar

2016 ◽  
Vol 27 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Emmanuel João Nogueira Leal da Silva ◽  
Thais Accorsi-Mendonça ◽  
Ana Carolina Pedrosa ◽  
José Mauro Granjeiro ◽  
Alexandre A. Zaia

Abstract The aim of the present study was to verify the long-term cytotoxic effects of the MTA Fillapex and to compare them with AH Plus. Dissolution rate and pH were also evaluated. Human osteoblast cells were incubated with elutes of fresh specimens from AH Plus and MTA Fillapex, and with elutes of the same specimens for 4 successive weeks. Elute's pH was evaluated at each time point. A multiparametric cell viability assay was performed. For dissolution rate, ISO methodology was used. The results were analyzed by one-way analysis of variance, complemented with the Tukey post-test (p<0.05). No significant difference was found among the materials when fresh mixed (p>0.05). After 1 week, AH Plus became non-cytotoxic on all three evaluated parameters. Conversely, MTA Fillapex remained severely and mildly cytotoxic over the entire experimental period (p<0.05). The dissolution rate of AH Plus was significantly lower than MTA Fillapex at all time points (p>0.05). The pH of AH Plus was significantly lower than MTA Fillapex at the second and third week (p<0.05). In the other tested time points no statistical difference was observed. In conclusion, MTA Fillapex remained cytotoxic after 4 weeks and its cytotoxicity may be related to the high dissolution rate of this material.


2019 ◽  
Vol 42 (12) ◽  
pp. 757-764 ◽  
Author(s):  
Busra Ozlu ◽  
Mert Ergin ◽  
Sevcan Budak ◽  
Selcuk Tunali ◽  
Nuh Yildirim ◽  
...  

Despite remarkable advancement in the past decades, heart-related defects are still prone to progress irreversibly and can eventually lead to heart failure. A personalized extracellular matrix–based bioartificial heart created by allografts/xenografts emerges as an alternative as it can retain the original three-dimensional architecture combined with a preserved natural heart extracellular matrix. This study aimed at developing a procedure for decellularizing heart tissue harvested from rats and evaluating decellularization efficiency in terms of residual nuclear content and structural properties. Tissue sections showed no or little visible cell nuclei in decellularized heart, whereas the native heart showed dense cellularity. In addition, there was no significant variation in the alignment of muscle fibers upon decellularization. Furthermore, no significant difference was detected between native and decellularized hearts in terms of fiber diameter. Our findings demonstrate that fiber alignment and diameter can serve as additional parameters in the characterization of biological heart scaffolds as these provide valuable input for evaluating structural preservation of decellularized heart. The bioartificial scaffold formed here can be functionalized with patient’s own material and utilized in regenerative engineering.


Sign in / Sign up

Export Citation Format

Share Document