scholarly journals IL-24-armed oncolytic vaccinia virus exerts potent antitumor effects via multiple pathways in colorectal cancer

Author(s):  
Lili Deng ◽  
Xue Yang ◽  
Jun Fan ◽  
Yuedi Ding ◽  
Ying Peng ◽  
...  

Colorectal cancer is an aggressive malignancy for which there are limited treatment options. Oncolytic vaccinia virus isbeing developed as a novel strategy for cancer therapy. Arming vaccinia virus with immunostimulatory cytokines can enhance the tumor cell-specific replication and antitumor efficacy. Interleukin-24 (IL-24) is an important immune mediator, as well as a broad-spectrum tumor suppressor. Here, we constructed a targeted vaccinia virus of Guang9 strain harbored IL-24 (VG9-IL-24) to evaluate its antitumor effects. In vitro, VG9-IL-24 induced increased number of apoptotic cells and blocked colorectal cancer cells in the G2/M phase of the cell cycle. VG9-IL-24 induced apoptosis in colorectal cancer cells via multiple apoptotic signaling pathways. In vivo,VG9-IL-24 significantly inhibited the tumor growth and prolonged the survival both in human and murine colorectal cancer models. Besides, VG9-IL-24 stimulated multiple antitumor immune responses and direct bystander antitumor activity. Our results indicate that VG9-IL-24 can inhibit the growth of colorectal cancer tumor by inducing oncolysis and apoptosis as well as stimulating the anti-tumor immune effects. These findings indicate that VG9-IL-24 may exert a potential therapeutic strategy for combating colorectal cancer

2010 ◽  
Vol 649 (1-3) ◽  
pp. 120-126 ◽  
Author(s):  
Anning Yin ◽  
Yingan Jiang ◽  
Xianfeng Zhang ◽  
Juan Zhao ◽  
Hesheng Luo

2016 ◽  
Vol 11 (5) ◽  
pp. 3551-3557
Author(s):  
PO-SHENG YANG ◽  
JANE-JEN WANG ◽  
YEA-HWEY WANG ◽  
WOAN-CHING JAN ◽  
SHIH-PING CHENG ◽  
...  

Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2013 ◽  
Vol 86 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Joseph W. Shelton ◽  
Timothy V. Waxweiler ◽  
Jerome Landry ◽  
Huiying Gao ◽  
Yanbo Xu ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
pp. 4762-4768 ◽  
Author(s):  
Ying Wang ◽  
Shoujun Yuan ◽  
Linna Li ◽  
Dexuan Yang ◽  
Chengwang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document