Formulation and Evaluation of Nanosuspension Formulation for Drug Delivery of Simvastatin

Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L. Shid

Poor water solubility and slow dissolution rate are issues drug content and polydispersity index. The obtained for the majority of upcoming and existing biologically results showed that particle size (nm) and rate of active compounds. Simvastatin is poorly water-soluble  dissolution has been improved when nanosuspension drug and its bioavailability is very low from its crystalline prepared with the higher concentration of PVPK-30 and form. The purpose of the present investigation was to Poloxamer-188 and lower concentration of SLS. The increase the solubility and dissolution rate of simvastatin by particle size and zeta potential of optimized formulation the preparation of nanosuspension by Emulsification was found to be 258.3 nm and 23.43. The rate of Solvent Diffusion Method at laboratory scale. Prepared dissolution of the optimized nanosuspension was nanosuspension was evaluated for its particle size and enhanced (90.02% in 60min), relative to plain simvastatin in vitro dissolution study and characterized by zeta (21% in 60 min), mainly due to the formation of nanosized potential, differential scanning calorimetry (DSC) and particles. These results indicate the suitability of 23 factorial X-Ray diffractometry (XRD), Motic digital microscopy, design for preparation of simvastatin loaded nanosus- entrapment efficiency, total drug content, saturated pension significantly improved in vitro dissolution rate, solubility study and in vivo study. A 23 factorial design was and thus possibly enhance fast onset of therapeutic drug employed to study the effect of independent variables, effect. In vivo study shows increase in bioavailability in amount of SLS (X1), amount of PVPK-30 (X2) and nanosuspension formulation than the plain simvastatin Poloxamer-188 (X3) and dependent variables are Total drug. 

Author(s):  
Rupali Shid L. ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L. Shid L.

Poor water solubility and slow dissolution rate are issues polydispersity index. The obtained results showed that for the majority of upcoming and existing biologically active  particlesize (nm) and rate of dissolution has been improved compounds. Simvastatin is poorly water-soluble drug and  when nanosuspension prepared with the higher its bioavailability is very low from its crystalline form. The  concentration of PVPK-30 with the higher concentration of purpose of the present investigation was to increase the  PVP K-30 and Poloxamer-188 and lower concentration of solubility and dissolution rate of simvastatin by the  SLS. The partical size and zeta potential of optimized preparation of nanosuspension by Emulsification Solvent  formulation was found to be 258.3 nm and 23.43. The rate Diffusion Method at laboratory scale. Prepared nanosus- of dissolution of the optimized nanosuspension was pension was evaluated for its particle size and in vitro  enhanced (90.02% in 60 min), relative to plain simvastatin dissolution study and characterized by zeta potential, (21% in 60 min), mainly due to the formation of nanosized differential scanning calorimetry (DSC) and X-Ray particles. These results indicate the suitability of 23 factorial diffractometry (XRD), motic digital microscopy, entrapment  design for preparation of simvastatin loaded efficiency, total drug content, saturated solubility study and nanosuspension significantly improved in vitro dissolution in vivo study. A 23 factorial design was employed to study  rate, and thus possibly enhance fast onset of therapeutic the effect of independent variables, amount of SLS (X1), drug effect. In vivo study shows increase in bioavailability in amount of PVPK-30 (X2) and Poloxamer-188 (X3) and  nanosuspension formulation than the plain simvastatin dependent variables are total drug content and drug. 


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 10 (6) ◽  
pp. 909-917
Author(s):  
Surya Goel ◽  
Vijay Agarwal ◽  
Monika Sachdeva

Background: Nanosuspension has arisen as a lucrative, remunerative, as well as a potent approach to improve the solubility and dissolution rate of poorly soluble drug entities. Several challenges are still present in this technology which need more research. Objective: The prime aim of this research work is to develop, optimize and characterize the oral nanosuspension using esomeprazole magnesium trihydrate as a drug candidate. Methods: The drug nanosuspensions were prepared using both approaches; Top-down and Bottom-up as the combinational approach. Poloxamer 188 was used as a stabilizer in this study. All the important formulation variables, like concentration of stabilizers that may influence characteristics of the nanosuspensions, were optimized. Formulation screening was performed using the optimization process, and the optimized nanosuspension was evaluated for its particle size, polydispersity index, zeta potential, shape, in vitro drug release and stability. Results: For optimization of drug nanosuspension, the effect of Poloxamer 188 concentration and esomeprazole concentration was investigated and the optimal values were 0.3% w/v and 4 mg/ml, respectively. The particle size of nanosuspensions was in the range of 185 to 1048 nm with varying the zeta potential values from -11.2 to -27.5 mV. The in vitro dissolution rate of esomeprazole was increased up to 3-folds, approximately (92% in 90 min) as compared with crude esomeprazole drug (31% in 90 min) due to the decrease in particle size. Conclusion: The result indicated that the combination of top-down and bottom-up approach used for preparing the oral nanosuspension is a suitable approach for poorly aqueous soluble drug moieties like esomeprazole magnesium.


2020 ◽  
Vol 10 (01) ◽  
pp. 9-15
Author(s):  
Sabitri Bindhani ◽  
Utkalika Mohapatra ◽  
Snehamayee Mohapatra ◽  
Rajat K. Kar

Nifedipine is a dihydropyridine calci channel blocking agent belongs to biopharmaceutical classification system (BCS) class-II mainly applied in the treatment of hypertension and angina-pectoris. The objective of this work is to improve the solubility and dissolution rate of nifedipine by formulating into a solid-self micro emulsifying drug delivery system (solid smedds). Methods: Oil, Surfactant, and cosurfactant were selected by solubility screening study. For the determination of the best emulsion region, a pseudo ternary diagram was prepared. Based on solubility castor oil, tween 80 and polyethylene glycol (PEG) 400 was selected in which SCOSmix (a mixture of surfactant and cosurfactant) was 1:1. Thermodynamic stability study was performed for the determination of stable smedds formulation. These formulations were evaluated for self emulsification time, drug content analysis, robustness to dilution test, particle size analysis, and in vitro diffusion study. The optimized formulation was selected for formulating into solid-smedds by using aerosil 200 at a different ratio. SCF9L (0.65:1) was selected due to its good flow property. Then it was evaluated for particle size analysis, drug content study, differential scanning calorimetry (DSC), X-Ray Diffraction study (XRD), fourier transform infrared spectroscopy (FTIR) Scanning Electron Microscopy study (SEM) analysis, and in vitro dissolution study. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM analysis, the texture of powder showed a uniform granular structure, and there was no incompatibility between drugs. Excipients was observed from ftir study. From the in vitro dissolution study, it improved the dissolution rate of nifedipine, which was 98.68% of drug release, where pure drug release only 6.75%.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 36-39
Author(s):  
S Deshmane ◽  
◽  
K Gandhi ◽  
S. Nagpure ◽  
A. Sawant ◽  
...  

The new mathematical model was developed by studying angle of slide using N, N-dimethyl acetamide, non-volatile liquid vehicle and prepared liquisolid tablets, in which the different concentrations of non-volatile liquid adsorbed over carrier and coating material separately. Both DSC and FT-IR study showed better compatibility and stability. The optimized formulation showed higher drug release during in-vitro and in-vivo study against conventional and marketed preparation. The present work concludes that N, N-dimethyl acetamide enhanced the solubility of pioglitazone HCl with higher dissolution rate through liquisolid technique.


Author(s):  
Moon Rajkumar ◽  
Gattani Surendra

 Objective: The objective of this study was to increase the solubility and dissolution rate of paliperidone (PAL) by preparing its nanocrystals using different hydrophilic carriers by antisolvent precipitation technique.Methods: The nanoparticles (NP) were characterized for aqueous solubility, drug content, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, particle size, and in vitro-in vivo analysis.Results: The results showed improved solubility and dissolution rate of NPs when compared to pure drug and physical mixture (PM). Solubility data showed a linear graph giving an indication that there is a gradual increase in the solubility profile of the drug with an increase in concentration of the carriers. At highest concentration, the solubility of NPs with Plasdone S630, Povidone K-25, and PVP K-30 found to be increased by 12 folds, 9 folds and 6 folds, respectively, as compared to pure drug. The release profile of NPs with Plasdone S630 in terms of dissolution efficiency at 60 min (DE60), initial dissolution rate (IDR), amount release in 15 min (Q15 min), and time for 75% release (t75%) shows better results when compared to pure drug, PM, and also NPs with povidone 25 and povidone 30. In vivo study reveals that optimized NPs elicited significant induction of cataleptic behavior which is the indication of antipsychotic agent(s) effect.Conclusion: The process antisolvent precipitation under constant stirring may be a promising method to produce stable PAL NPs with markedly enhanced solubility and dissolution rate due to nanonization with the increased surface area, improved wettability, and reduced diffusion pathway.


Sign in / Sign up

Export Citation Format

Share Document