Changes in snowmelt date and summer precipitation affect the flowering phenology of Erythronium grandiflorum (glacier lily; Liliaceae)

2010 ◽  
Vol 97 (9) ◽  
pp. 1431-1437 ◽  
Author(s):  
Allison M. Lambert ◽  
Abraham J. Miller-Rushing ◽  
David W. Inouye
2010 ◽  
Vol 365 (1555) ◽  
pp. 3187-3199 ◽  
Author(s):  
James D. Thomson

Spatio-temporal patterns of snowmelt and flowering times affect fruiting success in Erythronium grandiflorum Pursh (Liliaceae) in subalpine western Colorado, USA. From 1990 to 1995, I measured the consistency across years of snowmelt patterns and flowering times along a permanent transect. In most years since 1993, I have monitored fruit set in temporal cohorts (early- to late-flowering groups of plants) at one site. To assess ‘pollination limitation’, I have also conducted supplemental hand-pollination experiments at various times through the blooming season. The onset of blooming is determined by snowmelt, with the earliest years starting a month before the latest years owing to variation in winter snowpack accumulation. Fruit set is diminished or prevented entirely by killing frosts in some years, most frequently but not exclusively for the earlier cohorts. When frosts do not limit fruit set, pollination limitation is frequent, especially in the earlier cohorts. Pollination limitation is strongest for middle cohorts: it tends to be negated by frost in early cohorts and ameliorated by continuing emergence of bumble-bee queens in later cohorts. This lily appears to be poorly synchronized with its pollinators. Across the years of the study, pollination limitation appears to be increasing, perhaps because the synchronization is getting worse.


Ecoscience ◽  
2017 ◽  
Vol 24 (1-2) ◽  
pp. 13-19 ◽  
Author(s):  
Michael P. Cope ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
Patrick D. McMillan ◽  
...  

2020 ◽  
Author(s):  
Tetsuya K Matsumoto ◽  
Muneto Hirobe ◽  
Masahiro Sueyoshi ◽  
Yuko Miyazaki

Abstract Background and Aims Interspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors. Methods We evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established 10 experimental plots including the five Arisaema species on high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using the unified formula for reproductive isolation. Key Results Each Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots, and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history. Conclusions Our results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongdong Wang ◽  
Bin Zhu ◽  
Hongbo Wang ◽  
Li Sun

AbstractIn this study, we designed a sensitivity test using the half number concentration of sulfate in the nucleation calculation process to study the aerosol-cloud interaction (ACI) of sulfate on clouds, precipitation, and monsoon intensity in the summer over the eastern China monsoon region (ECMR) with the National Center for Atmospheric Research Community Atmosphere Model version 5. Numerical experiments show that the ACI of sulfate led to an approximately 30% and 34% increase in the cloud condensation nuclei and cloud droplet number concentrations, respectively. Cloud droplet effective radius below 850 hPa decreased by approximately 4% in the southern ECMR, while the total liquid water path increased by 11%. The change in the indirect radiative forcing due to sulfate at the top of the atmosphere in the ECMR during summer was − 3.74 W·m−2. The decreased radiative forcing caused a surface cooling of 0.32 K and atmospheric cooling of approximately 0.3 K, as well as a 0.17 hPa increase in sea level pressure. These changes decreased the thermal difference between the land and sea and the gradient of the sea-land pressure, leading to a weakening in the East Asian summer monsoon (EASM) and a decrease in the total precipitation rate in the southern ECMR. The cloud lifetime effect has a relatively weaker contribution to summer precipitation, which is dominated by convection. The results show that the ACI of sulfate was one possible reason for the weakening of the EASM in the late 1970s.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 461
Author(s):  
Mary T. K. Arroyo ◽  
Ítalo Tamburrino ◽  
Patricio Pliscoff ◽  
Valeria Robles ◽  
Maria Colldecarrera ◽  
...  

Delayed flowering due to later snowmelt and colder temperatures at higher elevations in the alpine are expected to lead to flowering phenological adjustment to prevent decoupling of peak flowering from the warmest time of the year, thereby favoring pollination. However, even if flowering is brought forward in the season at higher elevations, an elevational temperature gap is likely to remain between the high- and low-elevation populations of a species at the time these reach peak flowering on account of the atmospheric reduction in temperature with increasing elevation. The negative effect of this temperature gap on pollination could be compensated by plastically-prolonged flower life spans at higher elevations, increasing the probability of pollination. In a tightly temperature-controlled study, the flowering phenology adjustment and flower longevity compensation hypotheses were investigated in an alpine species in the Andes of central Chile. The snow free period varied from 7 to 8.2 months over 810 m elevation. Temperatures were suitable for growth on 82–98% of the snow free days. Flowering onset was temporally displaced at the rate of 4.6 d per 100 m increase in elevation and flowering was more synchronous at higher elevations. Flowering phenology was adjusted over elevation. The latter was manifest in thermal sums tending to decrease with elevation for population flowering onset, 50% flowering, and peak flowering when the lower thermal limit for growth (TBASE) was held constant over elevation. For TBASE graded over elevation so as to reflect the growing season temperature decline, thermal sums did not vary with elevation, opening the door to a possible elevational decline in the thermal temperature threshold for growth. Potential flower longevity was reduced by passive warming and was more prolonged in natural populations when temperatures were lower, indicating a plastic trait. Pollination rates, as evaluated with the Relative Pollination Rate index (RPR), when weighted for differences in floral abundance over the flowering season, declined with elevation as did fruit set. Contrary to expectation, the life-spans of flowers at higher elevations were not more prolonged and failed to compensate for the elevational decrease in pollination rates. Although strong evidence for phenological adjustment was forthcoming, flower longevity compensation did not occur over Oxalis squamata’s elevational range. Thus, flower longevity compensation is not applicable in all alpine species. Comparison with work conducted several decades ago on the same species in the same area provides valuable clues regarding the effects of climate change on flowering phenology and fitness in the central Chilean alpine where temperatures have been increasing and winter snow accumulation has been declining.


The Holocene ◽  
2021 ◽  
Vol 31 (3) ◽  
pp. 446-456
Author(s):  
Isaac Alfred Hart ◽  
Joan Brenner-Coltrain ◽  
Shannon Boomgarden ◽  
Andrea Brunelle ◽  
Larry Coats ◽  
...  

We present results of multiproxy analysis of a sediment core collected from Billy Slope Meadow, a spring-fed wet meadow in Range Creek Canyon, Utah. Range Creek Canyon was the home to Fremont maize farmers between roughly 1200 and 800 cal BP (AD 750–1150). Stable carbon isotope analysis of core sediments from Billy Slope Meadow indicate the Billy Slope Meadow site was used as a field for maize agriculture during that time. Some scholars have suggested the florescence of the Fremont culture may have been driven by increased summer precipitation, which improved the economic profitability of dry farming maize. But analysis of pollen, macroscopic charcoal and sediment geochemistry from Billy Slope Meadow, and a comparison with a local tree-ring chronology indicate the Fremont period in Range Creek Canyon was probably marked by reduced summer precipitation, and not an invigorated monsoon. The Fremont maize farmers of Range Creek Canyon therefore likely used winter snowpack-derived water from Range Creek for maize agriculture. This observation has significant implications, as using creek water rather than direct precipitation and runoff necessitates the construction of dams irrigation infrastructure, limited evidence for which has been reported by archaeologists working in the Fremont region.


Sign in / Sign up

Export Citation Format

Share Document