scholarly journals Reflection on the Progress and Benefits of the 6th World Congress of the Game Theory Society

2021 ◽  
Vol 15 (2) ◽  
pp. 220-221
Author(s):  
Ondřej ČERNÍK ◽  
Radim VALENČÍK
Author(s):  
Charles Roddie

When interacting with others, it is often important for you to know what they have done in similar situations in the past: to know their reputation. One reason is that their past behavior may be a guide to their future behavior. A second reason is that their past behavior may have qualified them for reward and cooperation, or for punishment and revenge. The fact that you respond positively or negatively to the reputation of others then generates incentives for them to maintain good reputations. This article surveys the game theory literature which analyses the mechanisms and incentives involved in reputation. It also discusses how experiments have shed light on strategic behavior involved in maintaining reputations, and the adequacy of unreliable and third party information (gossip) for maintaining incentives for cooperation.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1443
Author(s):  
Zhiyuan Dong ◽  
Ai-Guo Wu

In this paper, we extend the quantum game theory of Prisoner’s Dilemma to the N-player case. The final state of quantum game theory of N-player Prisoner’s Dilemma is derived, which can be used to investigate the payoff of each player. As demonstration, two cases (2-player and 3-player) are studied to illustrate the superiority of quantum strategy in the game theory. Specifically, the non-unique entanglement parameter is found to maximize the total payoff, which oscillates periodically. Finally, the optimal strategic set is proved to depend on the selection of initial states.


10.5772/6232 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 44 ◽  
Author(s):  
Yan Meng

This paper proposes a game-theory based approach in a multi–target searching using a multi-robot system in a dynamic environment. It is assumed that a rough priori probability map of the targets' distribution within the environment is given. To consider the interaction between the robots, a dynamic-programming equation is proposed to estimate the utility function for each robot. Based on this utility function, a cooperative nonzero-sum game is generated, where both pure Nash Equilibrium and mixed-strategy Equilibrium solutions are presented to achieve an optimal overall robot behaviors. A special consideration has been taken to improve the real-time performance of the game-theory based approach. Several mechanisms, such as event-driven discretization, one-step dynamic programming, and decision buffer, have been proposed to reduce the computational complexity. The main advantage of the algorithm lies in its real-time capabilities whilst being efficient and robust to dynamic environments.


2021 ◽  
Vol 14 ◽  
pp. 122-126
Author(s):  
Aleksandra L. Grinikh ◽  
◽  
Leon A. Petrosyan ◽  

In the paper n-person prisoner's dilemma on the network is investigated. A cooperative game with the pairwise interaction of players is constructed. The model is a modification of the classic 2-person prisoner's dilemma problem in the game theory. Network interaction provide an ability to take into account the in uence only to the adjacent players from the whole set of players. The feature of the game is found that allows to make a decision about necessity of playing dominated strategy by a few players. This solution is based on the number of the adjacent players. The work is a continuation of the paper published earlier by Grinikh A.L. and Petrosyan L.A. in 2021.


Sign in / Sign up

Export Citation Format

Share Document