scholarly journals Mechanical Properties of Bis-GMA/HEMA Resin Composite with Addition of Silicon Dioxide Nanoparticles

2021 ◽  
Vol 58 (1) ◽  
pp. 257-264
Author(s):  
Gabi Topor ◽  
Kamel Earar ◽  
Ion Ciuca ◽  
Sorin Berbece ◽  
Victorita Stefanescu ◽  
...  

The study of the mechanical behavior of materials intended for dental restorations is of crucial importance in the production of a finished product. In the present work, two resins were used for the material matrix, Bisphenol A diglycidyl methacrylate (Bis-GMA), hydroxyethylmethacrylate (HEMA) and a nanofiller (SiO2). This study focuses on the influence of nanoparticle size (30, 50, 100 and 150 nm) on the mechanical properties (flexural strenght and modulus, compression strenght and modulus and work of fracture) of the manufactured composite materials. The results showed improvements in the mechanical integrity of the samples, but differed depending on the size of the nanoparticles added. These differences are closely related to the active surface of the nanoparticles, leading to differences in filler-resin matrix compatibility.

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


2018 ◽  
Vol 31 (2) ◽  
pp. 154-167 ◽  
Author(s):  
Yu Qing Cui ◽  
Zhong Wei Yin

Although the extensive research has expanded on the modification of cyanate ester (CE) resins and the mechanical properties of CE composites, very few studies have been conducted on carbon fibre (CF)/modified CE winding composites and the thermomechanical properties of the composites. In this research, epoxy (EP)-modified novolac cyanate ester (NCE) and bismaleimide (BMI)-modified NCE resins were prepared. The CF/modified CE winding composites were manufactured, and their thermomechanical properties were tested. The optimal winding process was determined, and a preheating technique was implemented. Then, the EP/CE resin (10:90) and the BMI–DBA/CE resin (10:90) were selected as the resin matrix of the winding composite based on the viscosity properties, mechanical properties and thermal analysis (using thermogravimetric analysis and differential scanning calorimetry) of the modified CE resin. The selected resin exhibited good manufacturability at 70°C, good thermal stability and high Tg (above 370°C). The thermomechanical property tests indicate that the modified CE resin composite exhibits an outstanding mechanical strength at room temperature and at high temperatures (130°C, 150°C and 180°C) compared with that of the pure CE resin composite. The reasons for this enhancement can be attributed to a toughening mechanism and the effect of sizing agents on the CFs.


1999 ◽  
Vol 581 ◽  
Author(s):  
Cullen T. Vogelson ◽  
Yoshihiro Koide ◽  
Andrew R. Barrona

ABSTRACTChemically functionalized alumina nanoparticles (carboxylate-alumoxanes) are used as the inorganic component of a new class of inorganic-organic hybrid materials. Lysine- or para- hydroxybenzoic acid-derivatized alumoxanes are readily prepared from the reaction of boehmite, [Al(O)(OH)]n, with the appropriate carboxylic acid. The peripheral organic hydroxides and amines of these carboxylate-alumoxanes either react directly with epoxide resins, such as the diglycidyl ether of bisphenol-A (DER 332), to form a hybrid material, or in the presence of an organic resin and hardener system to form a composite material. SEM and AFM show a uniform distribution of alumina nanoparticles within the resin matrix. The properties and cure times of the alumoxane hybrid and composite materials are distinct from both the pure resins and from a physical blend of the resins with traditional ceramic fillers. A significant increase in thermal stability and tensile strength is observed for both the hybrid and composite resin systems. In addition, both carbon fiber and carbon/Kevlar® matting have been successfully incorporated into the hybrid resin systems resulting in further property improvements.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-91-2-98
Author(s):  
Ghufran K. Nahedh ◽  
◽  
Amer H. Majeed ◽  

This study deals with the effect of silicon dioxide nanoparticles (SiO2NPs) on the mechanical properties of polymer matrix composite (PMC). The nanocomposites were prepared by adding carbon fiber (CF1.5%) to the unsaturated polyester resin, and then different proportions of SiO2 NPs (1 to 4% by weight) were added using the ultrasonic bath machine dispersion method. The results showed that the tensile strength decreases with the increase in the partial weight of SiO2. Impact resistance, bending and compressive strength were improved by (50.67%, 10.2%, and 18.14%) respectively at 2% by weight, then these properties decreased with the increase in weight ratio of (SiO2), and the hardness was improved by (19.7%) at 3% by weight. The present study aims to study the effect of adding silicon dioxide nanoparticles on the mechanical properties (tensile properties, compression, hardness and bending) of carbon fiber reinforced unsaturated polyester composite.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nachiappan Sukumar ◽  
Mekonnen Bayeleyegn ◽  
Sampath Aruna

Purpose Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of composites. The main aim of this paper is to develop bamboo mat as reinforcing material with bagasse fiber as filler using epoxy resin matrix composite. Design/methodology/approach In this research, the effect of fiber surface treatments on mechanical properties of epoxy resin composite with bagasse as filler has been developed and investigated. The extracted bamboo fibers were treated with NaOH to improve the surface roughness fiber. Using treated and untreated bamboo fiber handwoven mat has been produced to be used as reinforcement and bagasse fiber has been converted into powder to be filled as filler. Composite material is fabricated using bamboo fiber and bagasse fiber as filler with epoxy resin as a matrix using hand layup technique. Findings Then, tensile, flexural and compressive strength and water absorption tests were conducted on sodium hydroxide treated and untreated fiber composites. The test results comparing with and without alkali treated composites show that there was significant change in their strength and water absorption properties on alkali treated fiber. Originality/value This study is an original research paper.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


Sign in / Sign up

Export Citation Format

Share Document